1,467 research outputs found

    Chemical equilibrium analysis of silicon carbide oxidation in oxygen and air

    Full text link
    Due to their refractory nature and oxidation resistance, Ultra‐High Temperature Ceramic materials, including silicon carbide, are of interest in hypersonic aerospace applications. To analyze the thermodynamic behavior of silicon carbide during transition between passive and active oxidation states, chemical equilibrium calculations are performed. The predicted oxygen pressures for passive‐to‐active transition show improved agreement up to an order of magnitude with experimental transition data in the literature, compared with Wagner’s model. Both oxygen and air environments are examined, and a 3% difference in transition temperature is observed. Material response analysis demonstrates that a surface temperature jump occurs during thermal oxidation of silicon carbide, corresponding to passive‐to‐active transition.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149275/1/jace16272.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149275/2/jace16272_am.pd

    Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction

    Full text link
    Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low costs remains a grand challenge. Here, we report a hybrid material of Co3O4 nanocrystals grown on reduced graphene oxide (GO) as a high-performance bi-functional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). While Co3O4 or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen-doping of graphene. The Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high performance non-precious metal based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co3O4 and graphene.Comment: published in Nature Material

    Supercapacitor and supercapattery as emerging electrochemical energy stores

    Get PDF
    This article reviews critically selected recent literature on electrochemical energy storage (EES) technologies, focusing on supercapacitor and also supercapattery which is a generic term for various hybrid devices combining the merits of rechargeable battery and supercapacitor. Fundamentals of EES are explained, aiming at clarification of some literature confusions such as the differences between capacitive and non-capacitive Faradaic charge storage mechanisms, and between cathode and positive electrode (positrode), and between anode and negative electrode (negatrode). In particular, the concept and origin of pseudocapacitance are qualitatively correlated with the band model for semiconductors. Strategies for design and construction of supercapattery are discussed in terms of both the materials structures and device engineering. Selection of materials, including electrolytes, is another topic reviewed selectively. Graphenes and carbon nanotubes are the favourable choice to composite with both capacitive and non-capacitive redox materials for improved kinetics of charge storage processes and charge-discharge cycling stability. Organoaqueous electrolytes show a great potential to enable EES to work at sub-zero temperatures, whilst solid ion conducting membranes and ionic liquids can help develop high voltage (> 4.0 V) and hence high energy supercapatteries

    Photoelectrochemical properties of mesoporous NiOx deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres

    Get PDF
    Nanoporous nickel oxide (NiO x ) has been deposited with two different procedures of sintering (CS and RDS). Both samples display solid state oxidation at about 3.1 V vs Li+/Li. Upon sensitization of CS/RDS NiO x with erythrosine b (ERY), nickel oxide oxidation occurs at the same potential. Impedance spectroscopy revealed a higher charge transfer resistance for ERY-sensitized RDS NiO x with respect to sensitized CS NiO x . This was due to the chemisorption of a larger amount of ERY on RDS with respect to CS NiO x . Upon illumination the photoinduced charge transfer between ERY layer and NiO x could be observed only with oxidized CS. Photoelectrochemical effects of sensitized RDS NiO x were evidenced upon oxide reduction. With the addition of iodine RDS NiOx electrodes could give the reduction iodine → iodide in addition to the reduction of RDS NiO x . p-type dye sensitized solar cells were assembled with RDS NiO x photocathodes sensitized either by ERY or Fast Green. Resulting overall efficiencies ranged between 0.02 and 0.04 % upon irradiation with solar spectrum simulator (Iin : 0.1 W cm −2 )

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system

    Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A.

    Get PDF
    During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these—Meltwater Pulse 1A—occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century1, 2, 3. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event4, 5, 6, 7. In particular, geophysical modelling studies constrained by tropical sea-level records1, 8, 9 suggest an Antarctic contribution of more than seven metres, whereas most reconstructions10 from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados2, the Sunda Shelf3 and Tahiti1. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates11, 12 of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A

    Graphene: A sub-nanometer trans-electrode membrane

    Get PDF
    Isolated, atomically thin conducting membranes of graphite, called graphene, have recently been the subject of intense research with the hope that practical applications in fields ranging from electronics to energy science will emerge. Here, we show that when immersed in ionic solution, a layer of graphene takes on new electrochemical properties that make it a trans-electrode. The trans-electrode's properties are the consequence of the atomic scale proximity of its two opposing liquid-solid interfaces together with graphene's well known in-plane conductivity. We show that several trans-electrode properties are revealed by ionic conductivity measurements on a CVD grown graphene membrane that separates two aqueous ionic solutions. Despite this membrane being only one to two atomic layers thick, we find it is a remarkable ionic insulator with a very small stable conductivity that depends on the ion species in solution. Electrical measurements on graphene membranes in which a single nanopore has been drilled show that the membrane's effective insulating thickness is less than one nanometer. This small effective thickness makes graphene an ideal substrate for very high-resolution, high throughput nanopore based single molecule detectors. Sensors based on modulation of graphene's in-plane electronic conductivity in response to trans-electrode environments and voltage biases will provide new insights into atomic processes at the electrode surfaces.Comment: Submitted 12 April 2010 to Nature, where it is under revie

    Antioxidant activity of aminodiarylamines in the thieno[3,2-b]pyridine series: radical scavenging activity, lipid peroxidation inhibition and redox profile

    Get PDF
    The antioxidant activity of the aminodi(hetero)arylamines, prepared by C-N coupling of the methyl 3-aminothieno[3,2-b]pyridine-2-carboxylate with bromonitrobenzenes and further reduction of the obtained nitro compounds, was evaluated by chemical, biochemical and electrochemical assays. The aminodi(hetero)arylamine with the amino group ortho to the NH and a methoxy group in para, was the most efficient in radical scavenging activity (RSA, 63 ”M) and reducing power (RP, 33 ”M), while the aminodiarylamine with the amino group in para to the NH, gave the best results in ÎČ-carotene-linoleate system (41 ”M) and inhibition of formation of thiobarbituric acid reactive substances in porcine brain cells homogenates (7 ”M), with EC50 values even lower than those obtained for the standard trolox. This diarylamine also presented the lowest oxidation potential, lower than the one of trolox, and the highest antioxidant power in the electrochemical assays. The para substitution with an amino group enables higher antioxidant potential.The authors are grateful to FCT and FEDER (European Fund for Regional Development)-COMPETE/QREN/EU for financial support through the research unities PEst-C/QUI/UI686/2011 and PEst-OE/AGR/UI0690/2011, the research project PTDC/QUI-QUI/111060/2009 and the post-Doctoral grant attributed to R.C.C. (SFRH/BPD/68344/2010)

    Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    Get PDF
    MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
    • 

    corecore