39 research outputs found
Recommended from our members
Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression.
Several studies have proposed that brain glutamate signaling abnormalities and glial pathology have a role in the etiology of major depressive disorder (MDD). These conclusions were primarily drawn from post-mortem studies in which forebrain brain regions were examined. The locus coeruleus (LC) is the primary source of extensive noradrenergic innervation of the forebrain and as such exerts a powerful regulatory role over cognitive and affective functions, which are dysregulated in MDD. Furthermore, altered noradrenergic neurotransmission is associated with depressive symptoms and is thought to have a role in the pathophysiology of MDD. In the present study we used laser-capture microdissection (LCM) to selectively harvest LC tissue from post-mortem brains of MDD patients, patients with bipolar disorder (BPD) and from psychiatrically normal subjects. Using microarray technology we examined global patterns of gene expression. Differential mRNA expression of select candidate genes was then interrogated using quantitative real-time PCR (qPCR) and in situ hybridization (ISH). Our findings reveal multiple signaling pathway alterations in the LC of MDD but not BPD subjects. These include glutamate signaling genes, SLC1A2, SLC1A3 and GLUL, growth factor genes FGFR3 and TrkB, and several genes exclusively expressed in astroglia. Our data extend previous findings of altered glutamate, astroglial and growth factor functions in MDD for the first time to the brainstem. These findings indicate that such alterations: (1) are unique to MDD and distinguishable from BPD, and (2) affect multiple brain regions, suggesting a whole-brain dysregulation of such functions
Rare coding variants in ten genes confer substantial risk for schizophrenia
Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3–50, P < 2.14 × 10−6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-d-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach
Effects of serotonin and fluoxetine on blood glucose regulation in two decapod species
All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs
Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide polymorphisms (SNPs). We applied stratified False Discovery Rate (sFDR) methods to leverage genic enrichment in GWAS summary statistics data to uncover new loci likely to replicate in independent samples. Specifically, we use linkage disequilibrium-weighted annotations for each SNP in combination with nominal p-values to estimate the True Discovery Rate (TDR = 1−FDR) for strata determined by different genic categories. We show a consistent pattern of enrichment of polygenic effects in specific annotation categories across diverse phenotypes, with the greatest enrichment for SNPs tagging regulatory and coding genic elements, little enrichment in introns, and negative enrichment for intergenic SNPs. Stratified enrichment directly leads to increased TDR for a given p-value, mirrored by increased replication rates in independent samples. We show this in independent Crohn's disease GWAS, where we find a hundredfold variation in replication rate across genic categories. Applying a well-established sFDR methodology we demonstrate the utility of stratification for improving power of GWAS in complex phenotypes, with increased rejection rates from 20% in height to 300% in schizophrenia with traditional FDR and sFDR both fixed at 0.05. Our analyses demonstrate an inherent stratification among GWAS SNPs with important conceptual implications that can be leveraged by statistical methods to improve the discovery of loci
Interaction of synthetic opioid metenkephalin peptide analogs, lilly 127623 and FK 33-824 with indole hallucinogens: Antagonism of N,N-dimethyltryptamine- and LSD-induced disruption of food-rewarded bar pressing behavior in the rat
The selected opioid metenkephalin synthetic peptide analogs Lilly (LY) 127623 and FK 33-824 were tested for behavioral dose effects and potential interaction with N,N-dimethyltryptamine (DMT) and lysergic acid diethylamide-25 (LSD) in adult male Holtzman rats trained on a positive reinforcement fixed-ratio 4 (FR-4) behavioral bar pressing schedule, i.e., a reward of 0.01 ml sugar-sweetened evaporated milk was earned on every fourth bar press. DMT (3.2 mg/kg) and LSD (0.1 mg/kg), administered IP following a 0.9% NaCl 15–20-min control pretreatment, disrupted established food-rewarded FR-4 bar pressing in a consistent and reproducible manner. Animals pretreated IP with predetermined behaviorally noneffective doses of LY 127623 (0.01–0.32 mg/kg) and FK 33-824 (0.001–0.01 mg/kg) 15–20 min prior to receiving DMT demonstrated significant antagonism to DMT-induced disruption of FR-4 bar pressing, while doses of 0.10–0.32 mg/kg LY 127623 and 0.00032–0.0032 mg/kg FK 33-824 significantly antagonized LSD-induced behavioral effects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46430/1/213_2004_Article_BF00432112.pd
Recommended from our members
Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression.
Several studies have proposed that brain glutamate signaling abnormalities and glial pathology have a role in the etiology of major depressive disorder (MDD). These conclusions were primarily drawn from post-mortem studies in which forebrain brain regions were examined. The locus coeruleus (LC) is the primary source of extensive noradrenergic innervation of the forebrain and as such exerts a powerful regulatory role over cognitive and affective functions, which are dysregulated in MDD. Furthermore, altered noradrenergic neurotransmission is associated with depressive symptoms and is thought to have a role in the pathophysiology of MDD. In the present study we used laser-capture microdissection (LCM) to selectively harvest LC tissue from post-mortem brains of MDD patients, patients with bipolar disorder (BPD) and from psychiatrically normal subjects. Using microarray technology we examined global patterns of gene expression. Differential mRNA expression of select candidate genes was then interrogated using quantitative real-time PCR (qPCR) and in situ hybridization (ISH). Our findings reveal multiple signaling pathway alterations in the LC of MDD but not BPD subjects. These include glutamate signaling genes, SLC1A2, SLC1A3 and GLUL, growth factor genes FGFR3 and TrkB, and several genes exclusively expressed in astroglia. Our data extend previous findings of altered glutamate, astroglial and growth factor functions in MDD for the first time to the brainstem. These findings indicate that such alterations: (1) are unique to MDD and distinguishable from BPD, and (2) affect multiple brain regions, suggesting a whole-brain dysregulation of such functions
G protein-linked signaling pathways in bipolar and major depressive disorders.
The G-protein linked signaling system (GPLS) comprises a large number of G-proteins, G protein-coupled receptors (GPCRs), GPCR ligands, and downstream effector molecules. G-proteins interact with both GPCRs and downstream effectors such as cyclic adenosine monophosphate (cAMP), phosphatidylinositols, and ion channels. The GPLS is implicated in the pathophysiology and pharmacology of both major depressive disorder (MDD) and bipolar disorder (BPD). This study evaluated whether GPLS is altered at the transcript level. The gene expression in the dorsolateral prefrontal (DLPFC) and anterior cingulate (ACC) were compared from MDD, BPD, and control subjects using Affymetrix Gene Chips and real time quantitative PCR. High quality brain tissue was used in the study to control for confounding effects of agonal events, tissue pH, RNA integrity, gender, and age. GPLS signaling transcripts were altered especially in the ACC of BPD and MDD subjects. Transcript levels of molecules which repress cAMP activity were increased in BPD and decreased in MDD. Two orphan GPCRs, GPRC5B and GPR37, showed significantly decreased expression levels in MDD, and significantly increased expression levels in BPD. Our results suggest opposite changes in BPD and MDD in the GPLS, "activated" cAMP signaling activity in BPD and "blunted" cAMP signaling activity in MDD. GPRC5B and GPR37 both appear to have behavioral effects, and are also candidate genes for neurodegenerative disorders. In the context of the opposite changes observed in BPD and MDD, these GPCRs warrant further study of their brain effects
