8 research outputs found

    Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase.

    No full text
    International audienceBACKGROUND & AIMS: Silymarin is a mixture of flavonolignans extracted from the milk thistle. Silymarin contains several molecules, including silibinin A, silibinin B, isosilibinin A, isosilibinin B, silicristin, and silidianin. Intravenous infusion of silibinin induces dose-dependent reduction of hepatitis C virus (HCV) RNA levels. The aim of this study was to test the principal isomers contained in silymarin preparations for their ability to inhibit HCV enzymatic functions and replication in different models. METHODS: The inhibitory activity of silymarin components was tested in HCV RNA-dependent RNA polymerase and NS3/4A protease enzyme assays. Their ability to inhibit replication of an HCV genotype 1b replicon model and the JFH1 infectious HCV model in cell culture was also studied. RESULTS: Silibinin A, silibinin B, their water-soluble dihydrogen succinate forms and Legalon SIL, a commercially available intravenous preparation of silibinin, inhibited HCV RNA-dependent RNA polymerase function, with inhibitory concentrations 50% of the order of 75-100 microM. Silibinin A and silibinin B also inhibited HCV genotype 1b replicon replication and HCV genotype 2a strain JFH1 replication in cell culture. None of these compounds inhibited HCV protease function. CONCLUSIONS: Silibinin A and silibinin B, as well as Legalon SIL, inhibit HCV replicon and JFH1 replication in cell culture. This effect is at least partly explained by the ability of these compounds to inhibit HCV RNA-dependent RNA polymerase activity. Our results provide a basis for the optimization and subsequent development of members of the Flavonoid family as specific HCV antivirals

    Data from: Development of SNP genotyping arrays in two shellfish species

    No full text
    Use of SNPs has been favored due to their abundance in plant and animal genomes, accompanied by the falling cost and rising throughput capacity for detection and genotyping. Here, we present in vitro (obtained from targeted sequencing) and in silico discovery of SNPs, and the design of medium-throughput genotyping arrays for two oyster species, the Pacific oyster, Crassostrea gigas, and European flat oyster, Ostrea edulis. Two sets of 384 SNP markers were designed for two Illumina GoldenGate arrays and genotyped on more than 1000 samples for each species. In each case, oyster samples were obtained from wild and selected populations and from three-generation families segregating for traits of interest in aquaculture. The rate of successfully genotyped polymorphic SNPs was about 60% for each species. Effects of SNP origin and quality on genotyping success (Illumina functionality score) were analyzed and compared with other model and non-model species. Furthermore, a simulation was made based on a subset of the C. gigas SNP array with a minor allele frequency of 0.3 and typical crosses used in shellfish hatcheries. This simulation indicated that at least 150 markers were needed to perform an accurate parental assignment. Such panels might provide valuable tools to improve our understanding of the connectivity between wild (and selected) populations and could contribute to future selective breeding programs

    Molecular epidemiology of hepatitis C virus subtype 3a in injecting drug users

    No full text
    Hepatitis C virus subtype 3a (HCV-3a) originates from Asia and has spread widely among injecting drug users as well as other patient groups in industrialized countries. HCV subtype 3a infection remains highly prevalent and frequently transmitted in the population of intravenous drug users. The objective of this study was to understand better the mechanisms of the worldwide HCV-3a epidemics in drug users. Ninety-three sera from HCV-3a-infected IDUs from France, the United States, Brazil, Argentina, and Australia were studied. Phylogenetic analyses of the non-structural 5B region showed no specific clustering according to the continent of the patient's origin. Non-exclusive clusters of viral sequences from South America, Australia, and California were observed, but topologies were not supported by strong bootstrap values. The results suggest that HCV-3a has been transmitted from a common origin through a unique worldwide epidemic that rapidly spread among drug users. Regional transmission occurred in the recent past, leading to an embryonic genetic diversification of HCV-3a among local injecting drug user population. J. Med. Virol. 78:1296-1303, 2006. © 2006 Wiley-Liss, Inc
    corecore