160 research outputs found

    Paving (through) Amazonia: Neoliberal Urbanism and the Reperipheralization of Roraima

    Get PDF
    This paper examines the neoliberal reshaping of infrastructure provision in Brazil's extreme north since the mid-1990s, when roadway investments resulted in unprecedented regional connectivity. The BR-174 upgrade, the era's most important project, marked a transition from resource-based developmentalism to free-market transnationalism. Primarily concerned with urban competitiveness, the federal government funded the trunk roadway's paving to facilitate manufacturing exports from Manaus. While an effort was made to minimize deforestation, planners sidelined development implications in adjacent Roraima. The state's urban system has thus experienced reperipheralization and intensified primacy. Market-led growth now compounds the inheritance of hierarchical centralism and ongoing governmental neglect. Our study shows a vast territory dependent on primate cities for basic goods and services. Travelling with Roraimans from bypassed towns, we detected long-distance passenger transportation and surface logistics with selective routes. Heterogeneous Roraiman (im)mobilities comprise middle-class tourism and heightened consumerism as well as informal mobility tactics and transnational circulations of precarious labor. The paper exhorts neoliberal urbanism research to look beyond both Euro America's metropoles and their Global South counterparts. Urbanization dynamics in Brazil's extreme north demonstrate that market-disciplined investments to globalize cities produce far-reaching spatial effects. These are felt even by functionally-articulated-yet-marginalized peripheries in ostensibly remote locations

    Impact of complex NOTCH1 mutations on survival in paediatric T-cell leukaemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular alterations occur frequently in T-ALL and the potential impact of those abnormalities on outcome is still controversial. The current study aimed to test whether <it>NOTCH1 </it>mutations and additional molecular abnormalities would impact T-ALL outcome in a series of 138 T-ALL paediatric cases.</p> <p>Methods</p> <p>T-ALL subtypes, status of <it>SIL-TAL1 </it>fusion, ectopic expression of <it>TLX3</it>, and mutations in <it>FBXW7</it>, <it>KRAS</it>, <it>PTEN </it>and <it>NOTCH1 </it>were assessed as overall survival (OS) and event-free survival (EFS) prognostic factors. OS and EFS were determined using the Kaplan-Meier method and compared using the log-rank test.</p> <p>Results</p> <p>The frequencies of mutations were 43.5% for <it>NOTCH1</it>, while <it>FBXW7</it>, <it>KRAS </it>and <it>PTEN </it>exhibited frequencies of 19.1%, 9.5% and 9.4%, respectively. In 78.3% of cases, the coexistence of <it>NOTCH1 </it>mutations and other molecular alterations was observed. In multivariate analysis no statistical association was revealed between <it>NOTCH1 </it>mutations and any other variable analyzed. The mean length of the follow-up was 68.4 months and the OS was 50.7%. <it>SIL-TAL1 </it>was identified as an adverse prognostic factor. <it>NOTCH1 </it>mutation status was not associated with outcome, while the presence of <it>NOTCH1 </it>complex mutations (indels) were associated with a longer overall survival (<it>p </it>= 0.031) than point mutations.</p> <p>Conclusion</p> <p><it>NOTCH1 </it>mutations alone or in combination with <it>FBXW7 </it>did not impact T-ALL prognosis. Nevertheless, complex <it>NOTCH1 </it>mutations appear to have a positive impact on OS and the <it>SIL-TAL1 </it>fusion was validated as a negative prognostic marker in our series of T-ALL.</p

    The Functioning of the Drosophila CPEB Protein Orb Is Regulated by Phosphorylation and Requires Casein Kinase 2 Activity

    Get PDF
    The Orb CPEB protein regulates translation of localized mRNAs in Drosophila ovaries. While there are multiple hypo- and hyperphosphorylated Orb isoforms in wild type ovaries, most are missing in orbF303, which has an amino acid substitution in a buried region of the second RRM domain. Using a proteomics approach we identified a candidate Orb kinase, Casein Kinase 2 (CK2). In addition to being associated with Orb in vivo, we show that ck2 is required for orb functioning in gurken signaling and in the autoregulation of orb mRNA localization and translation. Supporting a role for ck2 in Orb phosphorylation, we find that the phosphorylation pattern is altered when ck2 activity is partially compromised. Finally, we show that the Orb hypophosphorylated isoforms are in slowly sedimenting complexes that contain the translational repressor Bruno, while the hyperphosphorylated isoforms assemble into large complexes that co-sediment with polysomes and contain the Wisp poly(A) polymerase

    New Insights into the Mechanisms of Embryonic Stem Cell Self-Renewal under Hypoxia: A Multifactorial Analysis Approach

    Get PDF
    Previous reports have shown that culturing mouse embryonic stem (mES) cells at different oxygen tensions originated different cell proliferation patterns and commitment stages depending on which signaling pathways are activated or inhibited to support the pluripotency state. Herein we provide new insights into the mechanisms by which oxygen is influencing mES cell self-renewal and pluripotency. A multifactorial approach was developed to rationally evaluate the singular and interactive control of MEK/ERK pathway, GSK-3 inhibition, and LIF/STAT3 signaling at physiological and non-physiological oxygen tensions. Collectively, our methodology revealed a significant role of GSK-3-mediated signaling towards maintenance of mES cell pluripotency at lower O2 tensions. Given the central role of this signaling pathway, future studies will need to focus on the downstream mechanisms involved in ES cell self-renewal under such conditions, and ultimately how these findings impact human models of pluripotency

    Revealing the Functions of the Transketolase Enzyme Isoforms in Rhodopseudomonas palustris Using a Systems Biology Approach

    Get PDF
    BACKGROUND: Rhodopseudomonas palustris (R. palustris) is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin-Benson-Bassham (CBB) cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. METHODOLOGY/PRINCIPAL FINDINGS: By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM) but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC) strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth through both common and divergent metabolic mechanisms
    • …
    corecore