311 research outputs found

    New polyurethanes from oxypropylated olive stone

    Get PDF
    The purpose of this work is to explore the possibility of chemically modifying the generated polyols (oxypropylated olive stone) through reactions with isocyanates to produce polyurethanes, other than rigid polyurethane foams. This could be achieved by the chemical modification of the oxypropylation products (condensation with isocyanates) by using mono and difunctional reagents to modulate properties and/or produce useful polymer networks.FCT (project PTDC/CTM/71491/2006_FCOM- 01-0124-FEDER-007156

    Search for novel biobased materials within the OLIVPOL project

    Get PDF
    Within the context of the project OLIVPOL, olive stone (OS) residue was successfully converted into viscous polyols, as such, or containing reinforcing stone cores, by total or partial oxypropylation, respectively. Moreover, the synthesis of new macromolecular materials using the oxypropylated products, such as polyesters and polyurethanes, demonstrated a promising approach to the production of original value-added products based on renewable resources.FCT (Project PTDC/CTM/71491/2006_FCOM-01-0124-FEDER-007156

    The use of bio-based additives (lignin, starch and cellulose) in thermoplastic polyuretane formulations to enhance the biodegradability of footwear components

    Get PDF
    Thermoplastic polyurethanes (TPUs) are one of the most widely used polymeric materials. They can be used in an extensive range of applications, including automotive, footwear, interior design, adhesives, coatings, textile and biomedical. In what concerns the footwear sector, it is estimated that TPU based components represent about 60% of the whole European production of footwear components [1]. On the other hand, the use of a wide variety of additives in TPU formulations (e.g. pigments, coatings and fillers) limits the possibility of recycling. In such scenario, biodegradable polymers could offer an excellent solution to the environment hazard posed by the conventional materials [2]. Therefore, given the widespread use of TPUs and associated waste management problems, it makes sense to invest on the development of more biodegradable and environmental compatible solutions. For this purpose, the incorporation of bio-based and biodegradable additives is being studied in the last years [2-4]. The incorporation of a biodegradable compound, even at a low content in a TPU formulation, can promote biodegradation. It will constitute a preferential site for microorganisms’ attack thus favouring biodegradation initiation and progression. In this work, a base TPU used in the footwear industry was modified by compounding with three biobased additives (lignin, starch and cellulose). Biodegradability of the resulting materials was evaluated in agar plate tests against the fungi Aspergillus niger ATCC16404, the gram negative bacteria Pseudomonas aeruginosa ATCC9027 and an association of both (consortium). In a second phase soil tests have been also performed.info:eu-repo/semantics/publishedVersio

    Development of a prototype to access biodegradability of TPU shoe soles under controlled conditions

    Get PDF
    In the last years, the increasing problems posed by waste management have stimulated the interest in developing more sustainable and bio-based solutions for the footwear industry, including the use of biodegradable materials. As part of the NEWALK project, the objective of this work consisted in optimizing and implementing a respirometry system prototype. Besides evaluating different variables, two different approaches for measuring the evolved CO2 were assayed. Compared to manual titration, the use of conductivity offers the advantage of an automatic continuous monitoring.info:eu-repo/semantics/publishedVersio

    Screening of different microorganisms for their biodegradation capacity regarding polyester-based thermoplastic polyurethanes

    Get PDF
    and bio-based solutions in shoe manufacturing, including the use of biodegradable materials. As a first step towards the proposal of such solutions, in this work different microorganisms were screened for their intrinsic capacity to degrade a base TPU. The biodegradability was tested using the agar plate method against different bacteria, fungi and a consortium of both. The most promising results, corresponding to higher weight-loss percentages of the TPU sample, were obtained using the consortium of Pseudomonas aeruginosa and Aspergillus niger. These best conditions were thereafter applied to TPU samples compounded with biobased additives.info:eu-repo/semantics/publishedVersio

    Genetic variants in selenoprotein genes modulate biomarkers of selenium status in response to Brazil nut supplementation (the SU.BRA.NUT study)

    Get PDF
    This work was supported by Brazilian grants from São Paulo Research Foundation to JLSD (Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP processes: 2011/17720-0 and 2015/10146-8). Funding source had no involvement in study design, collection, analysis and interpretation of data from the present research.Peer reviewedPostprin

    Analysis Of The Ergosterol Biosynthesis Pathway Cloning, Molecular Characterization And Phylogeny Of Lanosterol 14 α-demethylase (erg11) Gene Of Moniliophthora Perniciosa

    Get PDF
    The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches’ broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed.ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.374683693Aime, M.C., Phillips-Mora, W., The causal agents of witches’ broom and frost pod rot of cacao (chocolate, Theobroma cacao) from a new lineage of Marasmiaceae (2005) Mycologia, 97, pp. 1012-1022Albertini, C., Thebaud, G., Fournier, E., Leroux, P., Eburicol 14α-demethylase gene (CYP51) polymorphism and speciation in Botrytis cinerea (2002) Mycol Res, 106, pp. 1171-1178Altschul, S.F., Gish, W., Miller, W., Myersewand Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410Bak, S., Kahn, R.A., Oisen, C.E., Halkier, B.A., Cloning and expression in Escherichia coli of the obtusifoliol 14α-demethylase of Sorghum bicolor (L.) Moench, a cytochrome P450 orthologous to the sterol 14α demethylases (CYP51) from fungi and mammals (1997) Plant J, 11, pp. 191-201Barrett-Bee, K., Dixon, G., Ergosterol biosynthesis inhibition: A target for antifungal agents (1995) Acta Biochim Pol, 42, pp. 465-480Bellamine, A., Mangla, A.T., Nes, W.D., Waterman, M.R., Characterization and catalytic properties of the sterol 14α-demethylase from Mycobacterium tuberculosis (1999) Proc Natl Acad Sci USA, 96, pp. 8937-8942Butler, G., Rasmussen, M.D., Lin, M.F., Santos, M.A., Sakthikumar, S., Munro, C.A., Rheinbay, E., Reedy, J.L., Evolution of pathogenicity and sexual reproduction in eight Candida genomes (2009) Nature, 459, pp. 657-662Carrillo-Muñoz, A.J., Giusiano, G., Ezkurra, P.A., QuindĂłs, G., Antifungal agents: Mode of action in yeast cells (2006) Rev Esp Quim, 19, pp. 130-139Ceita, G.O., Macedo, J.N., Santos, T.B., Alemanno, L., Gesteira, A.S., Micheli, F., Mariano, A.C., Meinhardt, L.W., Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa (2007) Plant Sci, 173, pp. 106-117D’souza, C.A., Kronstad, J.W., Taylor, G., Warren, R., Yuen, M., Hu, G., Jung, W.H., Tangen, K., Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts (2011) MBio, 2, pp. e00342-e00410DĂ©lye, C., Laigret, F., Corio-Costet, M.F., Cloning and sequence analysis of the eburicol 14α-demethylase gene of the obligate biotrophic grape powdery mildew fungus (1997) Gene, 195, pp. 29-33Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De Montigny, J., Talla, E., Genome evolution in yeasts (2004) Nature, 430, pp. 35-44Evans, H.C., Cacao diseases - The trilogy revisited (2007) Phytopathology, 97, pp. 1640-1643Felsenstein, J., Confidence limits on phylogenies: An approach using the bootstrap (1985) Evolution, 39, pp. 783-791Formighieri, E.F., Tiburcio, R.A., Armas, E.D., Medrano, F.J., Shimo, H., Carels, N., GĂłEs Neto, A., Sardinha-Pinto, N., The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid (2008) Mycol Res, 112, pp. 1136-1152Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A., Protein identification and analysis tools on the ExPASy Server (2005) The Proteomics and Protocols Handbook, pp. 571-607. , In: Walker JM, Humana Press, TotowaGoffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Johnston, M., Life with 6000 genes (1996) Science, 265, pp. 2077-2082Griffith, G.W., Bravo-Velasquez, E., Wilson, F.J., Lewis, D.M., Hedger, J.N., Autecology and evolution of the witches’ broom pathogen (Crinipellis perniciosa) of cocoa (1994) The Ecology of Plant Pathogens, pp. 245-265. , In: Blakeman JP and Williamson B, CAB International, WallingfordGriffith, G.W., Nicholson, J., Neinninger, A., Birch, R., Witches’ brooms and frosty pods: Two major pathogens of cacao (2003) New Zeal J Bot, 41, pp. 423-435Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Res, 41, pp. 95-98Hof, H., Critical annotations to the use of azole antifungals for plant protection (2001) Antimicrob Agents Chemother, 45, pp. 2987-2990Jackson, C.J., Lamb, D.C., Marczylo, T.H., Parker, J.E., Manning, N.L., Kelly, D.E., Kelly, S.L., Conservation and cloning of CYP51: A sterol 14α-demethylase from Mycobacterium smegmatis (2003) Biochem Biophys Res Commun, 301, pp. 558-563James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B., Hofstetter, V., Cox, C.J., Celio, G., Miadlikowska, J., Reconstructing the early evolution of Fungi using a six-gene phylogeny (2006) Nature, 19, pp. 818-822Jones, T., Federspiel, N.A., Chibana, H., Dungan, J., Kalman, S., Magee, B.B., Newport, G., Magee, P.T., The diploid genome sequence of Candida albicans (2004) Proc Natl Acad Sci USA, 101, pp. 7329-7334Kairuz, P.B., Zuber, J.P., Jaunin, P., Buchman, T.G., Bille, J., Rossier, M., Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-α-demethylase (L1A1) gene fragment (1994) J Clin Microbiol, 32, pp. 1902-1907Kalb, V.F., Woods, C.W., Turi, T.G., Dey, C.R., Sutter, T.R., Loper, J.C., Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae (1987) DNA, 6, pp. 529-537Kall, L., Krogh, A., Sonnhammer, E.L., Advantages of combined transmembrane topology and signal peptide prediction- the Phobius web server (2007) Nucleic Acids Res 35:429-, p. 432Kim, D., Lim, Y.R., Ohk, S.O., Kim, B.J., Chun, Y.J., Functional expression and characterization of CYP51 from dandruffcausing Malassezia globosa (2011) FEMS Yeast Res, 11, pp. 80-87Lai, M.H., Kirsch, D.R., Nucleotide sequence of cytochrome P450 L1A1 (lanosterol 14α-demethylase) from Candida albicans (1989) Nucleic Acids Res, 17, p. 804Lamb, D.C., Kelly, D.E., Manning, N.M., Hollomon, D.W., Kelly, S.L., Expression, purification, reconstitution and inhibition of Ustilago maydis sterol 14α-demethylase (CYP 51P450) (1998) FEMS Microbiol Lett, 169, pp. 369-373Lee, C.H., Hsu, K.H., Wang, S.Y., Chang, T.T., Chu, F.H., Shaw, J.F., Cloning and characterization of the lanosterol 14α-demethylase gene from Antrodia cinnamomea (2010) J Agr Food Chem, 58, pp. 4800-4807Lees, N.D., Skaggs, B., Kirsch DR and BirdM(1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae - A review Lipids, 30, pp. 221-226Lepesheva, G.I., Waterman, M.R., Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms (2007) Biochim Biophys Acta, 3, pp. 467-477Luo, C.X., Schnabel, G., The cytochrome P450 lanosterol 14α-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilia fructicola field isolates from Georgia (2008) Appl Environ Microb, 74, pp. 359-366Martin, F., Aerts, A., AhrĂ©n, D., Brun, A., Danchin, E.G., Duchaussoy, F., Gibon, J., Pereda, V., The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis (2008) Nature, 452, pp. 88-92McQuilken, M.P., Rudgard, S.A., Sensitivity of Crinipellis periciosa to two triazole fungicides in vitro and their effect on development of the fungus in cocoa (1988) Plant Pathol, 37, pp. 499-506Meinhardt, L.W., Bellato, C.M., Rincones, J., Azevedo, R.A., Cascardo, J.C.M., Pereira, G.A.G., In vitro production of biotrophic- like cultures of Crinipellis perniciosa, the causal agent of Witches’ broom disease of Theobroma cacao (2006) Curr Microbiol, 52, pp. 191-196Mellado, E., Guerra, T.M.D., Estrela, M.C., Tudela, J.L.R., Identification of two different 14α-sterol demethylase related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species (2001) J Clin Microbiol 39:2431-, p. 2438Mondego, J.M.C., Carazzolle, M.F., Costa, G.G.L., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Carrer, H., A genome survey of Moniliophthora perniciosa gives new insights into Witches’ broom disease of cacao (2008) BMC Genomics, 9, pp. 1-25Morales, I.J., Vohra, P.K., Puri, V., Kottom, T.J., Limper, A.H., Thomas, C.F., Characterization of a lanosterol 14α demethylase from Pneumocystis carinii (2003) Am J Resp Cell Mol, 29, pp. 232-238Mota, S.G.R., Barros, T.F., Castilho, M.S., In vitro screening and chemometrics analysis on a series of azole derivativeswith fungicide activity against Moniliophthora perniciosa (2010) J Braz Chem Soc, 21, pp. 510-519Nierman, W.C., Pain, A., Anderson, M.J., Wortman, J.R., Kim, H.S., Arroyo, J., Berriman, M., Bermejo, C., Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus (2005) Nature, 438, pp. 1151-1156Page, R.D.M., TREEVIEW: An application to display phylogenetic trees on personal computers (1996) Comput Appl Biosci, 12, pp. 357-358Park, H.G., Lee, I.S., Chun, Y.J., Yun, C.H., Johnston, J.B., Montellano, P.R.O., Kim, D., Heterologous expression and characterization of the sterol 14α-demethylase CYP51F from Candida albicans (2011) Arch Biochem Biophys, 509, pp. 9-15Pereira, J.L., Ram, A., Figueiredo, J.M., Almeida, L.C.C., Primeira ocorrĂȘncia de vassoura-de-bruxa na principal regiĂŁo produtora de cacau do Brasil (1989) AgrotrĂłpica, 1, pp. 79-81Petersen, T.N., Brunak, S., Heijne, G., Nielsen, H., SignalIP 4.0: Discriminating signal peptides from transmembrane regions (2011) Nat Methods, 10, pp. 785-786Pietila, M.P., Vohra, P.K., Sanyat, B., Wengenack, N.L., Raghavakaimal, S., Thomas, C.F., Cloning and characterization of CYP51 from Mycobacterium avium (2006) Am J Resp Cell Mol, 35, pp. 236-240Pires, A.B.L., Gramacho, K.P., Silva, D.C., GĂłes-Neto, A., Silva, M.M., Muniz-Sobrinho, J.S., Porto, R.F., Cascardo, J.C.M., Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes (2009) BMC Microbiol, 9, p. e158Purdy, L.H., Schimidt, R.A., Status of cacao witches’ broom: Biology, epidemiology, and management (1996) Annu Rev Phytopathol, 34, pp. 573-594Raeder, U., Broda, P., Rapid preparation of DNA from filamentous fungi (1985) Lett Appl Microbiol, 1, pp. 17-20Revankar, S.G., Fu, J., Rinaldi, M.G., Kelly, S.L., Kelly, D.E., Lamb, D.C., Keller, S.M., Wickes, B.L., Cloning and characterization of the lanosterol 14α-demethylase (ERG11) gene in Cryptococcus neoformans (2004) Biochem Biophys Res Commun, 324, pp. 719-728Rincones, J., Scarpari, L.M., Carazzolle, M.F., Mondego, J.M.C., Formighieri, E.F., Barau, J.G., Costa, G.G.L., Vilas-Boas, L.A., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa (2008) Mol Plant Microbe Int, 21, pp. 891-908Rio, M.C.S., Oliveira, B.V., Tomazella, D.P.T., Silva, J.A.F., Pereira, G.A.G., Production of calcium oxalate crystals by the basidiomycete Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao (2008) Curr Microbiol, 56, pp. 363-370Rozman, D., Stromstedt, M., Tsui, L.C., Scherer, S.W., Waterman, M.R., Structure and mapping of the human lanosterol 14α-demethylase gene (CYP51) encoding the cytochrome P450 involved in cholesterol biosynthesis: Comparison of exon/intron organization with other mammalian and fungal CYP genes (1996) Genomics, 38, pp. 371-381Sheng, C., Miao, Z., Ji, H., Yao, J., Wang, W., Che, X., Dong, G., Zhang, W., Three-dimensional model of lanosterol 14α-demethylase from Cryptococcus neoformans: Active- site characterization and insights into azole binding (2009) Antimicrob Agents Chemother, 53, pp. 3487-3495Sigrist, C.J.A., Cerutti, L., Castro, E., Langendijk-Genevaux, P.S., Bulliard, V., Bairoch, A., Hulo, N., PROSITE, a protein domain database for functional characterization and annotation (2009) Nucleic Acids Res, 38, pp. 161-166Stajich, J.E., Wilke, S.K., AhrĂ©n, D., Au, C.H., Birren, B.W., Borodovsky, M., Burns, C., Cheng, C.K., Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) (2010) Proc Natl Acad Sci USA, 107, pp. 11889-11894Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., AUGUSTUS: Ab initio prediction of alternative transcripts (2006) Nucleic Acids Res, 34, pp. 435-439Swofford, D.L., PAUP - Phylogenetic Analysis Using Parsimony (and other methods). Version 4.0b10 (2002) Sinauer Associates, , Sunderland, MATer-Hovhannisyan, V., Lomsadze, L., Chernoff, Y.O., Borodovsky, M., Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training (2008) Genome Res, 18, pp. 1979-1990Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weigh matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680Veen, M., Lang, C., Interactions of the ergosterol biosynthetic pathway with other lipid pathways (2005) Biochem Soc Trans, 33, pp. 1178-1181Warrilow, A.G.S., Melo, N., Martel, C.M., Parker, J.E., Nes, W.D., Kelly, S.L., Kelly, D.E., Expression, purification and characterization of Aspergillus fumigatus sterol 14α demethylase (CYP51) isoenzymes A and B (2010) Antimicrob Agents Chemother, 54, pp. 4225-4234Waterman, M.R., Lepesheva, G.I., Sterol 14 _-demethylase, an abundant and essential mixed-function oxidase (2005) Biochem Biophys Res Commun, 338, pp. 418-422Wood, H.M., Dickinson, M.J., Lucas, J.A., Dyer, P.S., Cloning of the CYP51 gene from the eyespot pathogen Tapesia yallundae indicates that resistance to the DMI fungicide prochloraz is not related to sequence changes in the gene encoding the target site enzyme (2001) FEMS Microbiol Lett, 196, pp. 183-187Zhao, L., Liu, D., Zhang, Q., Zhang, S., Wan J and XiaoW(2007) Expression and homology modeling of sterol 14α-demethylase from Penicillium digitatium FEMS Microbiol Lett, 277, pp. 37-4

    Materials, components and technology for the footwear of the future - Newalk project

    Get PDF
    At present, footwear is considered as one of the most internationalized sectors of the Portuguese industry with a significant importance for the national economy, as it is proved by the economic data of 2012: the average annual production was 74 million of shoe pares, being 90.0% of the production exported, which represents an average value of 1610 million euros [l].Financiai support from COMPETE, QREN and EU (project QREN SI J&D Copromoção 13850 NEWALK) and FCT and FEDER under Program COMPETE (PEst-C/EQB/LA0020/2011 strategic project).info:eu-repo/semantics/publishedVersio

    NEWALK: novos materiais e componentes para calçado do futuro

    Get PDF
    A indĂșstria do calçado Ă© o nĂșcleo de um importante cluster da economia nacional. A sua evolução refletiu-se no aumento da produtividade e no valor bruto da produção. Como resultado, o preço do calçado exportado em 2011 subiu para os 23,70 euros/par, tendo o valor global das exportaçÔes atingido 1548 milhĂ”es de euros (APICCAPS, 2012). Atualmente, este setor procura afirmar-se em nichos de mercado com maior exigĂȘncia tĂ©cnico-cientĂ­fica, de valor acrescentado e de padrĂ”es de qualidade elevados, resultando no investimento em investigação e desenvolvimento tecnolĂłgico. Neste contexto, o IPB tem participado em projetos de I&DT em parceria com o Centro TecnolĂłgico do Calçado de Portugal (CTCP), estando presentemente em curso o projeto NEWALK
    • 

    corecore