46 research outputs found

    Influences of various magnetospheric and ionospheric current systems on geomagnetically induced currents around the world

    Get PDF
    Ground-based observations of geomagnetic field (B field) are usually a superposition of signatures from different source current systems in the magnetosphere and ionosphere. Fluctuating B fields generate geoelectric fields (E fields), which drive geomagnetically induced currents (GIC) in technological conducting media at the Earth's surface. We introduce a new Fourier integral B field model of east/west directed line current systems over a one-dimensional multilayered Earth in plane geometry. Derived layered-Earth profiles, given in the literature, are needed to calculate the surface impedance, and therefore reflection coefficient in the integral. The 2003 Halloween storm measurements were Fourier transformed for B field spectrum Levenberg-Marquardt least squares inversion over latitude. The inversion modeled strengths of the equatorial electrojets, auroral electrojets, and ring currents were compared to the forward problem computed strength. It is found the optimized and direct results match each other closely and supplement previous established studies about these source currents. Using this model, a data set of current system magnitudes may be used to develop empirical models linking solar wind activity to magnetospheric current systems. In addition, the ground E fields are also calculated directly, which serves as a proxy for computing GIC in conductor-based networks

    Mechanical properties of cotton fabric reinforced geopolymer composites at 200-1000 °C

    Get PDF
    Geopolymer composites containing woven cotton fabric (0–8.3 wt%) were fabricated using the hand lay-up technique, and were exposed to elevated temperatures of 200 °C, 400 °C, 600 °C, 800 °C and 1000 °C. With an increase in temperature, the geopolymer composites exhibited a reduction in compressive strength, flexural strength and fracture toughness. When heated above 600 °C, the composites exhibited a significant reduction in mechanical properties. They also exhibited brittle behavior due to severe degradation of cotton fibres and the creation of additional porosity in the composites. Microstructural images verified the existence of voids and small channels in the composites due to fibre degradation

    Micro-CT evaluation of the radioprotective effect of resveratrol on the mandibular incisors of irradiated rats

    Get PDF
    Abstract The purpose of this study was to perform a microcomputed tomographic evaluation of the radioprotective effect of resveratrol on the volume of mandibular incisors of irradiated rats. A second aim was to make a quantitative assessment of the effect of x-ray exposure on these dental tissues. Twenty adult male rats were divided into four groups: control, irradiated control, resveratrol, and irradiated resveratrol. The resveratrol groups received 100 mg/kg of resveratrol, whereas the irradiated groups were exposed to 15 Gy of irradiation. The animals were sacrificed 30 days after the irradiation procedure, and their mandibles were removed and scanned in a microcomputed tomography unit. The images were loaded into Mimics software to allow segmentation of the mandibular incisor and assessment of its volume. The results were compared by One-way ANOVA and Tukey’s post hoc test, considering a 5% significance level. The irradiated groups showed significantly diminished volumes of the evaluated teeth, as compared with the control group (p < 0.05). The resveratrol group presented higher values than those of the irradiated groups, and volumes similar to those of the control group. High radiation doses significantly affected tooth formation, resulting in alterations in the dental structure, and thus lower volumes. Moreover, resveratrol showed no effective radioprotective impact on dental tissues. Future studies are needed to evaluate different concentrations of this substance, in an endeavor to verify its potential as a radioprotector for these dental tissues

    Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Get PDF
    A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats – SSRs and amplified fragment length polymorphisms – AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger’s modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm

    Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues and future prospects

    Get PDF
    Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physico-chemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metals-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches, evaluate their efficacy to remove toxic metals from our natural environment, explore current scientific progresses, field experiences and sustainability issues and revise world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in 21st century
    corecore