11,732 research outputs found

    On the rr-stability of spacelike hypersurfaces

    Full text link
    In this paper we study the strong stability of spacelike hypersurfaces with constant rr-th mean curvature in Generalized Robertson-Walker spacetimes of constant sectional curvature. In particular, we treat the case in which the ambient spacetime is the de Sitter space

    Fast and secure key distribution using mesoscopic coherent states of light

    Full text link
    This work shows how two parties A and B can securely share sequences of random bits at optical speeds. A and B possess true-random physical sources and exchange random bits by using a random sequence received to cipher the following one to be sent. A starting shared secret key is used and the method can be described as an unlimited one-time-pad extender. It is demonstrated that the minimum probability of error in signal determination by the eavesdropper can be set arbitrarily close to the pure guessing level. Being based on the MM-ry encryption protocol this method also allows for optical amplification without security degradation, offering practical advantages over the BB84 protocol for key distribution.Comment: 11 pages and 4 figures. This version updates the one published in PRA 68, 052307 (2003). Minor changes were made in the text and one section on Mutual Information was adde

    Thermodynamic and Dynamic Anomalies for Dumbbell Molecules Interacting with a Repulsive Ramp-Like Potential

    Get PDF
    Using collision driven discrete molecular dynamics (DMD), we investigate the thermodynamics and dynamics of systems of 500 dumbbell molecules interacting by a purely repulsive ramp-like discretized potential, consisting of nn steps of equal size. We compare the behavior of the two systems, with n=18n = 18 and n=144n = 144 steps. Each system exhibits both thermodynamic and dynamic anomalies, a density maximum and the translational and rotational mobilities show anomalous behavior. Starting with very dense systems and decreasing the density, both mobilities first increase, reache a maximum, then decrease, reache a minimum, and finally increase; this behavior is similar to the behavior of SPC/E water. The regions in the pressure-temperature plane of translational and rotational mobility anomalies depend strongly on nn. The product of the translational diffusion coefficient and the orientational correlation time increases with temperature, in contrast with the behavior of most liquids

    Coupled Microwave Billiards as a Model for Symmetry Breaking

    Full text link
    Two superconducting microwave billiards have been electromagnetically coupled in a variable way. The spectrum of the entire system has been measured and the spectral statistics analyzed as a function of the coupling strength. It is shown that the results can be understood in terms of a random matrix model of quantum mechanical symmetry breaking -- as e.g. the violation of parity or isospin in nuclear physics.Comment: 4 pages, 5 figure

    Phenomenological model for symmetry breaking in chaotic system

    Full text link
    We assume that the energy spectrum of a chaotic system undergoing symmetry breaking transitions can be represented as a superposition of independent level sequences, one increasing on the expense of the others. The relation between the fractional level densities of the sequences and the symmetry breaking interaction is deduced by comparing the asymptotic expression of the level-number variance with the corresponding expression obtained using the perturbation theory. This relation is supported by a comparison with previous numerical calculations. The predictions of the model for the nearest-neighbor-spacing distribution and the spectral rigidity are in agreement with the results of an acoustic resonance experiment.Comment: accepted for publication in Physical Review

    Analytical results for a Bessel function times Legendre polynomials class integrals

    Full text link
    When treating problems of vector diffraction in electromagnetic theory, the evaluation of the integral involving Bessel and associated Legendre functions is necessary. Here we present the analytical result for this integral that will make unnecessary numerical quadrature techniques or localized approximations. The solution is presented using the properties of the Bessel and associated Legendre functions.Comment: 4 page

    Molecular Evaluation of exons 8 and 22 of the SHANK3 gene in Autism Spectrum Disorders

    Get PDF
    Autism spectrum disorders are a group of neurodevelopmental disorders with a complex and heterogeneous etiology. Studies have shown that genetic factors play an important role in the aetiology of these diseases. Recently, de novo mutations, frameshifts and deletions have been described in the SHANK3 gene, also known as ProSAP2 gene, which encodes a synaptic scaffolding protein. All the participants of this study had normal karyotypes and underwent screening for Fragile-X syndrome. Subsequently, they were analyzed by direct sequencing of different points of exons 8 and 22 of the SHANK3 gene. None of the study participants presented with changes in these regions. These findings may be due to the fact that mutations, deletions and duplications of the SHANK3 gene are rare

    Water-like hierarchy of anomalies in a continuous spherical shouldered potential

    Get PDF
    We investigate by molecular dynamics simulations a continuous isotropic core-softened potential with attractive well in three dimensions, introduced by Franzese [cond-mat/0703681, to appear on Journal of Molecular Liquids], that displays liquid-liquid coexistence with a critical point and water-like density anomaly. Here we find diffusion and structural anomalies. These anomalies occur with the same hierarchy that characterizes water. Yet our analysis shows differences with respect to the water case. Therefore, many of the anomalous features of water could be present in isotropic systems with soft-core attractive potentials, such as colloids or liquid metals, consistent with recent experiments showing polyamorphism in metallic glasses.Comment: 27 pages, 9 figures. to appear in J. Chem. Phy

    Time-evolution of the Rule 150 cellular automaton activity from a Fibonacci iteration

    Get PDF
    The total activity of the single-seeded cellular rule 150 automaton does not follow a one-step iteration like other elementary cellular automata, but can be solved as a two-step vectorial, or string, iteration, which can be viewed as a generalization of Fibonacci iteration generating the time series from a sequence of vectors of increasing length. This allows to compute the total activity time series more efficiently than by simulating the whole spatio-temporal process, or even by using the closed expression.Comment: 4 pages (3 figs included
    corecore