38 research outputs found

    Genetic algorithm-based discharge estimation at sites receiving lateral inflows

    Get PDF
    The genetic algorithm (GA) technique is applied to obtain optimal parameter values of the standard rating curve model (RCM) for predicting, in real time, event-based flow discharge hydrographs at sites receiving significant lateral inflows. The standard RCM uses the information of discharge and effective cross-sectional flow area at an upstream station and effective cross-sectional flow area wave travel time later at a downstream station to predict the flow rate at this last site. The GA technique obtains the optimal parameter values of the model, here defined as the GA-RCM model, by minimizing the mean absolute error objective function. The GA-RCM model was tested to predict hydrographs at three different stations, located on the Upper Tiber River in central Italy. The wave travel times characterizing the three selected river branches are, on the average, 4, 8, and 12h. For each river reach, seven events were employed, four for the model parameters' calibration and three for model testing. The GA approach, employing 100 chromosomes in the initial gene pool, 75% crossover rate, 5% mutation rate, and 10,000 iterations, made the GA-RCM model successfully simulate the hydrographs observed at each downstream section closely capturing the trend, time to peak, and peak rates with, on the average, less than 5% error. The model performance was also tested against the standard RCM model, which uses, on the contrary to the GA-RCM model, different values for the model parameters and wave travel time for each event, thus, making the application of the standard RCM for real time discharge monitoring inhibited. The comparative results revealed that the RCM model improved its performance by using the GA technique in estimating parameters. The sensitivity analysis results revealed that at most two events would be sufficient for the GA-RCM model to obtain the optimal values of the model parameters. A lower peak hydrograph can also be employed in the calibration to predict a higher peak hydrograph. Similarly, a shorter travel time hydrograph can be used in GA to obtain optimal model parameters that can be used to simulate floods characterized by longer travel time. For its characteristics, the GA-RCM model is suitable for the monitoring of discharge in real time, at river sites where only water levels are observed

    Un letto funebre con decorazione in osso da Teramo (Italia)

    Get PDF
    The authors propose a morphological and iconographic reconstruction of a Roman funeral couch decorated in bone working upon numerous cladding pieces coming from a grave in bustum in the necropolis of La Cona – Teramo (Abruzzo). The bed, classified within the «turned legs» typology, was probably adorned with a Bacchic iconographic theme and can be dated on the first half of the 1st century A.D., the time that records the widest diffusion of this kind furniture.Las autoras proponen la reconstrucción morfológica e iconográfica de la decoración en hueso de un lecho funerario romano a partir de numerosos fragmentos de revestimiento procedentes de una sepultura in bustum de la necrópolis de La Cona en Teramo (Abruzzo). El lecho, integrado en la tipología del mobiliario con "patas torneadas", estaba probablemente adornado con un tema báquico y se encuadra cronológicamente en la primera mitad del siglo I d.C, época de mayor difusión de este tipo de muebles

    Un letto funebre con decorazione in osso da Teramo (Italia)

    Get PDF
    The authors propose a morphological and iconographic reconstruction of a Roman funeral couch decorated in bone working upon numerous cladding pieces coming from a grave <em>in bustum</em> in the necropolis of La Cona – Teramo (Abruzzo). The bed, classified within the «turned legs» typology, was probably adorned with a Bacchic iconographic theme and can be dated on the first half of the 1st century A.D., the time that records the widest diffusion of this kind furniture.<br><br>Las autoras proponen la reconstrucción morfológica e iconográfica de la decoración en hueso de un lecho funerario romano a partir de numerosos fragmentos de revestimiento procedentes de una sepultura <em>in bustum</em> de la necrópolis de La Cona en Teramo (Abruzzo). El lecho, integrado en la tipología del mobiliario con "patas torneadas", estaba probablemente adornado con un tema báquico y se encuadra cronológicamente en la primera mitad del siglo I d.C, época de mayor difusión de este tipo de muebles

    Real-time flood stage forecasting by Variable Parameter Muskingum Stage hydrograph routing method

    Get PDF
    The application of a Variable Parameter Muskingum Stage (VPMS) hydrograph routing method for real-time flood forecasting at a river gauging site is demonstrated in this study. The forecast error is estimated using a two-parameter linear autoregressive model with its parameters updated at every routing time interval of 30 minutes at which the stage observations are made. This hydrometric data-based forecast model is applied for forecasting floods at the downstream end of a 15 km reach of the Tiber River in Central Italy. The study reveals that the proposed approach is able to provide reliable forecast of flood estimate for different lead times subject to a maximum lead time nearly equal to the travel time of the flood wave within the selected routing reach. Moreover, a comparative study of the VPMS method for real-time forecasting and the simple stage forecasting model (STAFOM), currently in operation as the Flood Forecasting and Warning System in the Upper-Middle Tiber River basin of Italy, demonstrates the capability of the VPMS model for its field use

    Comparing grey formulations of the velocity-area method and entropy method for discharge estimation with uncertainty.

    Get PDF
    Two methods, namely the velocity-area method and the entropy method, for assessing with uncertainty discharge measurements at gauged river sites are analysed and compared; uncertainty is represented through the grey number technique. Two different approaches for the 'greyification' of both methods are presented. In the first approach, the uncertainty affecting each measurement used to estimate the discharge is characterized by means of a grey number: all the grey uncertainty components are then combined through grey mathematics. In the second approach, greyification is applied to the relationship expressing the total uncertainty on the discharge measurement provided by the EN ISO 748 guidelines. Results of the application of the proposed methods to measurement data pertaining to three different gauged sections of the Tiber River, in central Italy, show that the first greyification approach leads to a broader discharge uncertainty estimate with respect to the second. Furthermore, as the greyification approach and the flow area quantification are the same, the velocity-area and entropy methods provide nearly the same estimate of the uncertainty affecting the discharge measurements, i.e., the grey discharges provided by the two methods are very similar. This testifies in favour of the entropy method, which is simpler than the other from an operative viewpoint

    A Self-Contained and Automated Method for Flood Hazard Maps Prediction in Urban Areas

    Get PDF
    Water depths and velocities predicted inside urban areas during severe storms are traditionally the final result of a chain of hydrologic and hydraulic models. The use of a single model embedding all the components of the rainfall–runoff transformation, including the flux concentration in the river network, can reduce the subjectivity and, as a consequence, the final uncertainty of the computed water depths and velocities. In the model construction, a crucial issue is the management of the topographic data. The information given by a Digital Elevation Model (DEM) available on a regular grid, as well as all the other elevation data provided by single points or contour lines, allow the creation of a Triangulated Irregular Network (TIN) based unstructured digital terrain model, which provides the spatial discretization for both the hydraulic and the hydrologic models. The procedure is split into four steps: (1) correction of the elevation z* measured in the nodes of a preliminary network connecting the edges with all the DEM cell centers; (2) the selection of a suitable hydrographic network where at least one edge of each node has a strictly descending elevation, (3) the generation of the computational mesh, whose edges include all the edges of the hydrographic network and also other lines following internal boundaries provided by roads or other infrastructures, and (4) the estimation of the elevation of the nodes of the computational mesh. A suitable rainfall–runoff transformation model is finally applied to each cell of the identified computational mesh. The proposed methodology is applied to the Sovara stream basin, in central Italy, for two flood events—one is used for parameter calibration and the other one for validation purpose. The comparison between the simulated and the observed flooded areas for the validation flood event shows a good reconstruction of the urban flooding

    Estimating the hydrodynamic and morphodynamic characteristics using Entropy theory at the confluence of Negro and Solimões Rivers

    Get PDF
    When two mega rivers merge the mixing of two flows results in a highly complex threedimensional flow structure in an area known as the confluence hydrodynamic zone

    Transient anomalous diffusion MRI measurement discriminates porous polymeric matrices characterized by different sub-microstructures and fractal dimension

    Get PDF
    Considering the current development of new nanostructured and complex materials and gels, it is critical to develop a sub-micro-scale sensitivity tool to quantify experimentally new parameters describing sub-microstructured porous systems. Diffusion NMR, based on the measurement of endogenous water’s diffusion displacement, offers unique information on the structural features of materials and tissues. In this paper, we applied anomalous diffusion NMR protocols to quantify the subdiffusion of water and to measure, in an alternative, non-destructive and non-invasive modality, the fractal dimension dw of systems characterized by micro and sub-micro geometrical structures. To this end, three highly heterogeneous porous-polymeric matrices were studied. All the three matrices composed of glycidylmethacrylate-divynilbenzene porous monoliths obtained through the High Internal Phase Emulsion technique were characterized by pores of approximately spherical symmetry, with diameters in the range of 2–10 μm. Pores were interconnected by a plurality of window holes present on pore walls, which were characterized by size coverings in the range of 0.5–2 μm. The walls were characterized by a different degree of surface roughness. Moreover, complementary techniques, namely Field Emission Scanning Electron Microscopy (FE-SEM) and dielectric spectroscopy, were used to corroborate the NMR results. The experimental results showed that the anomalous diffusion α parameter that quantifies subdiffusion and dw = 2/α changed in parallel to the specific surface area S (or the surface roughness) of the porous matrices, showing a submicroscopic sensitivity. The results reported here suggest that the anomalous diffusion NMR method tested may be a valid experimental tool to corroborate theoretical and simulation results developed and performed for describing highly heterogeneous and complex systems. On the other hand, non-invasive and non-destructive anomalous subdiffusion NMR may be a useful tool to study the characteristic features of new highly heterogeneous nanostructured and complex functional materials and gels useful in cultural heritage applications, as well as scaffolds useful in tissue engineering

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
    corecore