8 research outputs found

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2

    Modernity, Modernism, Postmodernism

    No full text
    Conference on Modernism and Modernity (1997, Santiago de Compostela

    In Mortal Shakespeare. Radical Readings

    No full text
    A conference on William Shakespeare took place during the second week of November, 1987, in Saint Jacques of Compostela

    Development and Characterization of Inhaled Ethanol as a Novel Pharmacological Strategy Currently Evaluated in a Phase II Clinical Trial for Early-Stage SARS-CoV-2 Infection

    No full text
    Inhaled administration of ethanol in the early stages of COVID-19 would favor its location on the initial replication sites, being able to reduce the progression of the disease and improving its prognosis. Before evaluating the efficacy and safety of this novel therapeutic strategy in humans, its characterization is required. The developed 65° ethanol formulation is stable at room temperature and protected from light for 15 days, maintaining its physicochemical and microbiological properties. Two oxygen flows have been tested for its administration (2 and 3 L/min) using an automated headspace gas chromatographic analysis technique (HS-GC-MS), with that of 2 L/min being the most appropriate one, ensuring the inhalation of an ethanol daily dose of 33.6 ± 3.6 mg/min and achieving more stable concentrations during the entire treatment (45 min). Under these conditions of administration, the formulation has proven to be safe, based on histological studies of the respiratory tracts and lungs of rats. On the other hand, these results are accompanied by the first preclinical molecular imaging study with radiolabeled ethanol administered by this route. The current ethanol formulation has received approval from the Spanish Agency of Medicines and Medical Devices for a phase II clinical trial for early-stage COVID-19 patients, which is currently in the recruitment phase (ALCOVID-19; EudraCT number: 2020-001760-29)

    Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain

    No full text
    corecore