19 research outputs found

    Twitching and swimming motility play a role in Ralstonia solanacearum pathogenicity

    Get PDF
    Ralstonia solanacearum is a bacterial plant pathogen causing important economic losses worldwide. In addition to the polar flagella responsible for swimming motility, this pathogen produces type IV pili (TFP) that govern twitching motility, a flagellum-independent movement on solid surfaces. The implication of chemotaxis in plant colonization, through the control flagellar rotation by the proteins CheW and CheA, has been previously reported in R. solanacearum. In this work, we have identified in this bacterium homologues of the Pseudomonas aeruginosa pilI and chpA genes, suggested to play roles in TFP-associated motility analogous to those played by the cheW and cheA genes, respectively. We demonstrate that R. solanacearum strains with a deletion of the pilI or the chpA coding region show normal swimming and chemotaxis but altered biofilm formation and reduced twitching motility, transformation efficiency, and root attachment. Furthermore, these mutants displayed wild-type growth in planta and impaired virulence on tomato plants after soil-drench inoculations but not when directly applied to the xylem. Comparison with deletion mutants for pilA and fliC encoding the major pilin and flagellin subunits, respectively showed that both twitching and swimming are required for plant colonization and full virulence. This work proves for the first time the functionality of a pilus-mediated pathway encoded by pil-chp genes in R. solanacearum, demonstrating that pilI and chpA genes are bona fide motility regulators controlling twitching motility and its three related phenotypes: virulence, natural transformation, and biofilm formation

    RecA Protein Plays a Role in the Chemotactic Response and Chemoreceptor Clustering of Salmonella enterica

    Get PDF
    The RecA protein is the main bacterial recombinase and the activator of the SOS system. In Escherichia coli and Salmonella enterica sv. Typhimurium, RecA is also essential for swarming, a flagellar-driven surface translocation mechanism widespread among bacteria. In this work, the direct interaction between RecA and the CheW coupling protein was confirmed, and the motility and chemotactic phenotype of a S. Typhimurium ΔrecA mutant was characterized through microfluidics, optical trapping, and quantitative capillary assays. The results demonstrate the tight association of RecA with the chemotaxis pathway and also its involvement in polar chemoreceptor cluster formation. RecA is therefore necessary for standard flagellar rotation switching, implying its essential role not only in swarming motility but also in the normal chemotactic response of S. Typhimurium.National Institutes of Health (U.S.) (Grant 1R01GM100473

    Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

    Full text link
    Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis

    The Leptospira interrogans lexA Gene Is Not Autoregulated

    No full text
    Footprinting and mutagenesis experiments demonstrated that Leptospira interrogans LexA binds the palindrome TTTGN(5)CAAA found in the recA promoter but not in the lexA promoter. In silico analysis revealed that none of the other canonical SOS genes is under direct control of LexA, making the leptospiral lexA gene the first described which is not autoregulated

    Acute effects of brevetoxin-3 administered via oral gavage to mice

    No full text
    International audienceBrevetoxins (BTXs) constitute a family of lipid-soluble toxic cyclic polyethers mainly produced by Karenia brevis, which is the main vector for a foodborne syndrome known as neurotoxic shellfish poisoning (NSP) in humans. To prevent health risks associated with the consumption of contaminated shellfish in France, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) recommended assessing the effects of BTXs via an acute oral toxicity study in rodents. Here, we investigated the effect of a single oral administration in both male and female mice with several doses of BTX-3 (100 to 1,500 µg kg−1 bw) during a 48 h observation period in order to provide toxicity data to be used as a starting point for establishing an acute oral reference dose (ARfD). We monitored biological parameters and observed symptomatology, revealing different effects of this toxin depending on the sex. Females were more sensitive than males to the impact of BTX-3 at the lowest doses on weight loss. For both males and females, BTX-3 induced a rapid, transient and dose-dependent decrease in body temperature, and a transient dose-dependent reduced muscle activity. Males were more sensitive to BTX-3 than females with more frequent observations of failures in the grip test, convulsive jaw movements, and tremors. BTX-3’s impacts on symptomatology were rapid, appearing during the 2 h after administration, and were transient, disappearing 24 h after administration. The highest dose of BTX-3 administered in this study, 1,500 µg kg−1 bw, was more toxic to males, leading to the euthanasia of three out of five males only 4 h after administration. BTX-3 had no effect on water intake, and affected neither the plasma chemistry parameters nor the organs’ weight. We identified potential points of departure that could be used to establish an ARfD (decrease in body weight, body temperature, and muscle activity)

    Double-Tagging Polymerase Chain Reaction with a Thiolated Primer and Electrochemical Genosensing based on Gold Nanocomposite Sensor for Food Safety

    No full text
    A novel material for electrochemical biosensing based on rigid conducting gold nanocomposite (nano-AuGEC) is presented. Islands of chemisorbing material (gold nanoparticles) surrounded by nonreactive, rigid, and conducting graphite epoxy composite are thus achieved to avoid the stringent control of surface coverage parameters required during immobilization of thiolated oligos in continuous gold surfaces. The spatial resolution of the immobilized thiolated DNA was easily controlled by merely varying the percentage of gold nanoparticles in the composition of the composite. As low as 9 fmol (60 pM) of synthetic DNA were detected in hybridization experiments when using a thiolated probe. Moreover, for the first time a double tagging PCR strategy was performed with a thiolated primer for the detection of Salmonella sp., one of the most important foodborne pathogens affecting food safety. Ibis assay was performed by double-labeling the amplicon during the PCR with a -DIG and -SH set of labeled primers. The thiolated end allows the immobilization of the amplicon on the nano-AuGEC electrode, while digoxigenin allows the electrochemical detection with the antiDIG-HRP reporter in the femtomole range. Rigid conducting gold nanocomposite represents a good material for the improved and oriented immobilization of biomolecules with excellent transducing properties for the construction of a wide range of electrochemical biosensors such as immunosensors, genosensors, and enzymosensors
    corecore