9,858 research outputs found

    The pairing Hamiltonian for one pair of identical nucleons bound in a potential well

    Get PDF
    The problem of one pair of identical nucleons sitting in N{\cal N} single particle levels of a potential well and interacting through the pairing force is treated introducing even Grassmann variables. The eigenvectors are analytically expressed solely in terms of these with coefficients fixed by the eigenvalues and the single particle energies. When the latter are those of an harmonic oscillator well an accurate expression is derived for both the collective eigenvalue and for those trapped in between the single particle levels, for any strength of the pairing interaction and for any number of levels. Notably the trapped solutions are labelled through an index upon which they depend parabolically.Comment: 5 pages, 1 postscript figur

    On the analytic solution of the pairing problem: one pair in many levels

    Get PDF
    We search for approximate, but analytic solutions of the pairing problem for one pair of nucleons in many levels of a potential well. For the collective energy a general formula, independent of the details of the single particle spectrum, is given in both the strong and weak coupling regimes. Next the displacements of the solutions trapped in between the single particle levels with respect to the unperturbed energies are explored: their dependence upon a suitably defined quantum number is found to undergo a transition between two different regimes.Comment: 30 pages, AMS Latex, 8 figures. Submitted to Phys. Rev.

    Validation of a statistic algorithm applied to LES model - Part I: First and second order statistics

    Get PDF
    The main objective of this work is to develop a statistical algorithm to process the data generated by the Large-Eddy-Simulation model (LES) in real time. The simulations analyzed here were based on a convective, neutral and stable periods. Mainly the temperature and velocity components were analyzed. The new statistical algorithm generates all the first and second order statistic moments for “u,v,w, ¿ ,q”, and the components of TKE equation budget. All these parameters were developed to the resolved and sub-grid scales and indicate agreement with the expected profile

    Nuclear effects in charged-current quasielastic neutrino-nucleus scattering

    Get PDF
    After a short review of the recent developments in studies of neutrino-nucleus interactions, the predictions for double-differential and integrated charged current-induced quasielastic cross sections are presented within two different relativistic approaches: one is the so-called SuSA method, based on the superscaling behavior exhibited by electron scattering data; the other is a microscopic model based on relativistic mean field theory, and incorporating final-state interactions. The role played by the meson-exchange currents in the two-particle two-hole sector is explored and the results are compared with the recent MiniBooNE data.Comment: 12 pages, 9 figures, to appear in the Proceedings of "XIII Convegno di Cortona su Problemi di Fisica Nucleare Teorica", Cortona (Italy), April 6-8, 201

    Quasielastic Charged Current Neutrino-nucleus Scattering

    Get PDF
    We provide integrated cross sections for quasielastic charged-current neutrino-nucleus scattering. Results evaluated using the phenomenological scaling function extracted from the analysis of experimental (e,e)(e,e') data are compared with those obtained within the framework of the relativistic impulse approximation. We show that very reasonable agreement is reached when a description of final-state interactions based on the relativistic mean field is included. This is consistent with previous studies of differential cross sections which are in accord with the universality property of the superscaling function.Comment: 5 pages, 3 figures, to be published in Phys. Rev. Let

    Relativistic descriptions of final-state interactions in charged-current quasielastic neutrino-nucleus scattering at MiniBooNE kinematics

    Get PDF
    The results of two relativistic models with different descriptions of the final-state interactions are compared with the MiniBooNE data of charged-current quasielastic cross sections. The relativistic mean field model uses the same potential for the bound and ejected nucleon wave functions. In the relativistic Green's function (RGF) model the final-state interactions are described in the inclusive scattering consistently with the exclusive scattering using the same complex optical potential. The RGF results describe the experimental data for total cross-sections without the need to modify the nucleon axial mass.Comment: 5 pages 3 figure

    Phase Transitions in a Kinetic Flocking Model of Cucker-Smale Type

    Get PDF
    We consider a collective behavior model in which individuals try to imitate each others' velocity and have a preferred speed. We show that a phase change phenomenon takes place as diffusion decreases, bringing the system from a “disordered” to an “ordered” state. This effect is related to recently noticed phenomena for the diffusive Vicsek model. We also carry out numerical simulations of the system and give further details on the phase transition

    Relativistic Models for Quasi-Elastic Neutrino-Nucleus Scattering

    Get PDF
    Two relativistic approaches to charged-current quasielastic neutrino-nucleus scattering are illustrated and compared: one is phenomenological and based on the superscaling behavior of electron scattering data and the other relies on the microscopic description of nuclear dynamics in relativistic mean field theory. The role of meson exchange currents in the two-particle two-hole sector is explored. The predictions of the models for differential and total cross sections are presented and compared with the MiniBooNE data.Comment: 3 pages, 3 figures, Proceedings of PANIC 2011, MIT, Cambridge, MA, July 201
    corecore