11 research outputs found

    integration of enhanced optical tracking techniques and imaging in igrt

    Get PDF
    Patient setup/Optical tracking/IGRT/Treatment surveillance. In external beam radiotherapy, modern technologies for dynamic dose delivery and beam conformation provide high selectivity in radiation dose administration to the pathological volume. A comparable accuracy level is needed in the 3-D localization of tumor and organs at risk (OARs), in order to accomplish the planned dose distribution in the reality of each irradiation session. In-room imaging techniques for patient setup verification and tumor targeting may benefit of the combined daily use of optical tracking technologies, supported by techniques for the detection and compensation of organ motion events. Multiple solutions to enhance the use of optical tracking for the on-line correction of target localization uncertainties are described, with specific emphasis on the compensation of setup errors, breathing movements and non-rigid deformations. The final goal is the implementation of customized protocols where appropriate external landmarks, to be tracked in real-time by means of noninvasive optical devices, are selected as a function of inner target localization. The presented methodology features high accuracy in patient setup optimization, also providing a valuable tool for on-line patient surveillance, taking into account both breathing and deformation effects. The methodic application of optical tracking is put forward to represent a reliable and low cost procedure for the reduction of safety margins, once the patient-specific correlation between external landmarks and inner structures has been established. Therefore, the integration of optical tracking with in-room imaging devices is proposed as a way to gain higher confidence in the framework of Image Guided Radiation Therapy (IGRT) treatments

    Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging.</p> <p>Method and Materials</p> <p>We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion.</p> <p>Results</p> <p>According to optical measurements, the size of intra-fraction motion was (<it>median ± quartile</it>) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly.</p> <p>Conclusion</p> <p>Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques.</p

    3D OPTOELECTRONIC ANALYSIS OF INTERFRACTIONAL PATIENT SETUPVARIABILITY IN FRAMELESS EXTRACRANIALSTEREOTACTIC RADIOTHERAPY

    No full text
    Purpose: To investigate size and frequency of interfractional patient setup variability in hypofractionated stereotactic extracranial radiotherapy. Methods and Materials: Infrared optical 3D tracking of surface markers was applied to quantify setup variability on 51 patients. Isocenter position repeatability was assessed by means of frameless anatomic calibration and was compared with portal image evaluation. Specific data analysis allowed for compensation of patients' breathing movements and for separation of the effects of operator-dependent misalignments and respiration-induced displacements. Effects of patient position (supine vs. prone) and treatment table configuration were investigated. Results: Patient positioning assisted by the optical tracking device allowed reducing displacements of surface control points within the 3-mm range. Errors in isocenter localization were in the range of a few millimeters. This was in agreement with the portal image evaluation. Breathing motion introduced appreciable errors, which increased control points and isocenter 3D variability. This effect was significantly higher than those related to other investigated factors. Conclusions: The role of infrared optical tracking devices for patient positioning is assessed on a large patient population. Their use in the frame of high-precision radiotherapy is emphasized by the application of related methodologies for breathing phase detection and frameless isocenter localization

    MRI quantification of pancreas motion as a function of patient setup for particle therapy -a preliminary study

    No full text
    Particle therapy (PT) has shown positive therapeutic results in local control of locally advanced pancreatic lesions. PT effectiveness is highly influenced by target localization accuracy both in space, since the pancreas is located in proximity to radiosensitive vital organs, and in time as it is subject to substantial breathing-related motion. The purpose of this preliminary study was to quantify pancreas range of motion under typical PT treatment conditions. Three common immobilization devices (vacuum cushion, thermoplastic mask, and compressor belt) were evaluated on five male patients in prone and supine positions. Retrospective four-dimensional magnetic resonance imaging data were reconstructed for each condition and the pancreas was manually segmented on each of six breathing phases. A k-means algorithm was then applied on the manually segmented map in order to obtain clusters representative of the three pancreas segments: head, body, and tail. Centers of mass (COM) for the pancreas and its segments were computed, as well as their displacements with respect to a reference breathing phase (beginning exhalation). The median three-dimensional COM displacements were in the range of 3 mm. Latero-lateral and superior-inferior directions had a higher range of motion than the anterior-posterior direction. Motion analysis of the pancreas segments showed slightly lower COM displacements for the head cluster compared to the tail cluster, especially in prone position. Statistically significant differences were found within patients among the investigated setups. Hence a patient-specific approach, rather than a general strategy, is suggested to define the optimal treatment setup in the frame of a millimeter positioning accuracy

    Robust frameless stereotactic localization in extra-cranial radiotherapy.

    No full text
    In the field of extra-cranial radiotherapy, several inaccuracies can make the application of frameless stereotactic localization techniques error-prone. When optical tracking systems based on surface fiducials are used, inter- and intra-fractional uncertainties in marker three-dimensional (3D) detection may lead to inexact tumor position estimation, resulting in erroneous patient setup. This is due to the fact that external fiducials misdetection results in deformation effects that are poorly handled in a rigid-body approach. In this work, the performance of two frameless stereotactic localization algorithms for 3D tumor position reconstruction in extra-cranial radiotherapy has been specifically tested. Two strategies, unweighted versus weighted, for stereotactic tumor localization were examined by exploiting data coming from 46 patients treated for extra-cranial lesions. Measured isocenter displacements and rotations were combined to define isocentric procedures, featuring 6 degrees of freedom, for correcting patient alignment (isocentric positioning correction). The sensitivity of the algorithms to uncertainties in the 3D localization of fiducials was investigated by means of 184 numerical simulations. The performance of the implemented isocentric positioning correction was compared to conventional point-based registration. The isocentric positioning correction algorithm was tested on a clinical dataset of inter-fractional and intra-fractional setup errors, which was collected by means of an optical tracker on the same group of patients. The weighted strategy exhibited a lower sensitivity to fiducial localization errors in simulated misalignments than those of the unweighted strategy. Isocenter 3D displacements provided by the weighted strategy were consistently smaller than those featured by the unweighted strategy. The peak decrease in median and quartile values of isocenter 3D displacements were 1.4 and 2.7 mm, respectively. Concerning clinical data, the weighted strategy isocentric positioning correction provided the reduction of fiducial registration errors, featuring up to 61.7% decrease in median values (versus 46.8% for the unweighted strategy) of initial displacements. The weighted strategy proved high performance in minimizing the effects of fiducial localization errors, showing a great potential in improving patient setup. The clinical data analysis revealed that the application of a robust reconstruction algorithm may provide high-quality results in patient setup verification, by properly managing external fiducials localization errors

    Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    No full text
    none10noVia, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, GuidoVia, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guid
    corecore