561 research outputs found

    Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    Get PDF
    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were \u27radiologically thin\u27 or \u27thick\u27. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency\u27s dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material. © 2009 Institute of Physics and Engineering in Medicine

    Normal tissue damage: Its importance, history and challenges for the future

    Get PDF
    Sir Oliver Scott, a philanthropist and radiation biologist and, therefore, the epitome of a gentleman and a scholar, was an early Director of the BECC Radiobiology Research Unit at Mount Vernon. His tenure preceded that of Jack Fowler, with both contributing to basic, translational and clinical thought and application in radiation across the globe. With respect to this review, Fowler\u27s name in particular has remained synonymous with the use of models, both animal and mathematical, that assess and quantify the biological mechanisms that underlie radiation-associated normal tissue toxicities. An understanding of these effects is critical to the optimal use of radiation therapy in the clinic; however, the role that basic sciences play in clinical practice has been undergoing considerable change in recent years, particularly in the USA, where there has been a growing emphasis on engineering and imaging to improve radiation delivery, with empirical observations of clinical outcome taking the place of models underpinned by evidence from basic science experiments. In honour of Scott and Fowler\u27s work, we have taken this opportunity to review how our respective fields of radiation biology and radiation physics have intertwined over the years, affecting the clinical use of radiation with respect to normal tissue outcomes. We discuss the past and current achievements, with the hope of encouraging a revived interest in physics and biology as they relate to radiation oncology practice, since, like Scott and Fowler, we share the goal of improving the future outlook for cancer patients

    A review of radiotherapy-induced late effects research after advanced technology treatments

    Get PDF
    The number of incident cancers and long-term cancer survivors is expected to increase substantially for at least a decade. Advanced technology radiotherapies, e.g., using beams of protons and photons, offer dosimetric advantages that theoretically yield better outcomes. In general, evidence from controlled clinical trials and epidemiology studies are lacking. To conduct these studies, new research methods and infrastructure will be needed. In the paper, we review several key research methods of relevance to late effects after advanced technology proton-beam and photon-beam radiotherapies. In particular, we focus on the determination of exposures to therapeutic and stray radiation and related uncertainties, with discussion of recent advances in exposure calculation methods, uncertainties, in silico studies, computing infrastructure, electronic medical records, and risk visualization. We identify six key areas of methodology and infrastructure that will be needed to conduct future outcome studies of radiation late effects

    Gas-to-wall absorbed dose conversion factors for neutron energies of 25 to 250 MeV

    Get PDF
    Cavity chamber absorbed dose measurements do not usually strictly adhere to the conditions of the Fano theorem and therefore the differences in the gas and wall mass stopping powers must be taken into account. Values of gas-to-wall absorbed dose conversion factors rm,g were calculated for neutron energies of 25 to 250 MeV for detectors with walls of C, O, Mg, Al, Si, Fe, Zr, AlN, Al2O3, SiO2, ZrO2, and A-150 tissue-equivalent (TE) plastic and with gas cavities of acetylene, dry air, Ar, an Ar-CO2 mixture, CO2, isobutane, isobutane-based TE, methane, methane-based TE, propane, and propane-based TE. The rm,g calculations required initial spectral fluences of 1H, 2H, 3H, 3He, and 4He ions released by neutron reactions in the walls, and these were calculated with the Los Alamos High Energy Transport code. Mass-stopping-power data were taken from Ziegler and co-workers. Additional calculations were made in order to test the sensitivity of rm,g to input data from other sources, i.e., ion spectral fluences from the ALICE nuclear reaction code and mass-stopping powers from the recent ICRU evaluation. © 1997 Academic Press

    The physics of proton therapy

    Get PDF
    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy

    Anonymization of DICOM electronic medical records for radiation therapy

    Get PDF
    Electronic medical records (EMR) and treatment plans are used in research on patient outcomes and radiation effects. In many situations researchers must remove protected health information (PHI) from EMRs. The literature contains several studies describing the anonymization of generic Digital Imaging and Communication in Medicine (DICOM) files and DICOM image sets but no publications were found that discuss the anonymization of DICOM radiation therapy plans, a key component of an EMR in a cancer clinic. In addition to this we were unable to find a commercial software tool that met the minimum requirements for anonymization and preservation of data integrity for radiation therapy research. The purpose of this study was to develop a prototype software code to meet the requirements for the anonymization of radiation therapy treatment plans and to develop a way to validate that code and demonstrate that it properly anonymized treatment plans and preserved data integrity. We extended an open-source code to process all relevant PHI and to allow for the automatic anonymization of multiple EMRs. The prototype code successfully anonymized multiple treatment plans in less than 1. min/patient. We also tested commercial optical character recognition (OCR) algorithms for the detection of burned-in text on the images, but they were unable to reliably recognize text. In addition, we developed and tested an image filtering algorithm that allowed us to isolate and redact alpha-numeric text from a test radiograph. Validation tests verified that PHI was anonymized and data integrity, such as the relationship between DICOM unique identifiers (UID) was preserved. © 2014 Elsevier Ltd

    A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy

    Get PDF
    State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models
    • …
    corecore