147 research outputs found

    Dissociations within nondeclarative memory in Huntington's disease.

    Get PDF

    Enhanced Magnetic Anisotropy of Mn12-acetate

    Full text link
    Thin films of the Single Molecule Magnet (Mn12-acetate) have been fabricated on a Si-substrate by the Dip-and-Dry method, a simple and robust technique. Atomic force microscopy and X-ray photoelectron spectroscopy characterizations reveal that homogeneous, thin films of a few molecular layers with smoothness at the molecular level are deposited. Significant changes in magnetic properties of Mn12-acetate exposed to the same solvent were observed in zero-field-cooled and field-cooled magnetization, as well as ac-susceptibility measurements. The blocking temperature was found to increase to TB > 10 K at low magnetic fields, indicating an enhanced magnetic anisotropy.Comment: 14 pages, 4 figure

    Low-Temperature Quantum Relaxation in a System of Magnetic Nanomolecules

    Full text link
    We argue that to explain recent resonant tunneling experiments on crystals of Mn12_{12} and Fe8_8, particularly in the low-T limit, one must invoke dynamic nuclear spin and dipolar interactions. We show the low-TT, short-time relaxation will then have a t/τ\sqrt{t/\tau} form, where τ\tau depends on the nuclear T2T_2, on the tunneling matrix element Δ10\Delta_{10} between the two lowest levels, and on the initial distribution of internal fields in the sample, which depends very strongly on sample shape. The results are directly applicable to the Fe8Fe_8 system. We also give some results for the long-time relaxation.Comment: 4 pages, 3 PostScript figures, LaTe

    Electronic-Cigarette Vehicles and Flavoring Affect Lung Function and Immune Responses in a Murine Model

    Get PDF
    The use of electronic nicotine delivery systems (ENDS), also known as electronic-cigarettes (e-cigs), has raised serious public health concerns, especially in light of the 2019 outbreak of e-cig or vaping product use-associated acute lung injury (EVALI). While these cases have mostly been linked to ENDS that contain vitamin E acetate, there is limited research that has focused on the chronic pulmonary effects of the delivery vehicles (i.e., without nicotine and flavoring). Thus, we investigated lung function and immune responses in a mouse model following exposure to the nearly ubiquitous e-cig delivery vehicles, vegetable glycerin (VG) and propylene glycol (PG), used with a specific 70%/30% ratio, with or without vanilla flavoring. We hypothesized that mice exposed sub-acutely to these e-cig aerosols would exhibit lung inflammation and altered lung function. Adult female C57BL/6 mice (n= 11-12 per group) were exposed to filtered air, 70%/30% VG/PG, or 70%/30% VG/PG with a French vanilla flavoring for 2 h a day for 6 weeks. Prior to sacrifice, lung function was assessed. At sacrifice, broncho-alveolar lavage fluid and lung tissue were collected for lipid mediator analysis, flow cytometry, histopathology, and gene expression analyses. Exposures to VG/PG + vanilla e-cig aerosol increased lung tidal and minute volumes and tissue damping. Immunophenotyping of lung immune cells revealed an increased number of dendritic cells, CD4+ T cells, and CD19+ B cells in the VG/PG-exposed group compared to air, irrespective of the presence of vanilla flavoring. Quantification of bioactive lung lipids demonstrated a \u3e3-fold increase of 2-arachidonoylglycerol (2-AG), an anti-inflammatory mediator, and a 2-fold increase of 12-hydroxyeicosatetraenoic acid (12-HETE), another inflammatory mediator, following VG/PG exposure, with or without vanilla flavoring. This suggests that e-cig aerosol vehicles may affect immunoregulatory molecules. We also found that the two e-cig aerosols dysregulated the expression of lung genes. Ingenuity Pathway Analysis revealed that the gene networks that are dysregulated by the VG/PG e-cig aerosol are associated with metabolism of cellular proteins and lipids. Overall, our findings demonstrate that VG and PG, the main constituents of e-liquid formulations, when aerosolized through an e-cig device, are not harmless to the lungs, since they disrupt immune homeostasis

    Tailored anti-biofilm activity – Liposomal delivery for mimic of small antimicrobial peptide

    Get PDF
    The eradication of bacteria embedded in biofilms is among the most challenging obstacles in the management of chronic wounds. These biofilms are found in most chronic wounds; moreover, the biofilm-embedded bacteria are considerably less susceptible to conventional antimicrobial treatment than the planktonic bacteria. Antimicrobial peptides and their mimics are considered attractive candidates in the pursuit of novel therapeutic options for the treatment of chronic wounds and general bacterial eradication. However, some limitations linked to these membrane-active antimicrobials are making their clinical use challenging. Novel innovative delivery systems addressing these limitations represent a smart solution. We hypothesized that incorporation of a novel synthetic mimic of an antimicrobial peptide in liposomes could improve its anti-biofilm effect as well as the anti-inflammatory activity. The small synthetic mimic of an antimicrobial peptide, 7e-SMAMP, was incorporated into liposomes (~280 nm) tailored for skin wounds and evaluated for its potential activity against both biofilm formation and eradication of pre-formed biofilms. The 7e-SMAMP-liposomes significantly lowered inflammatory response in murine macrophages (~30 % reduction) without affecting the viability of macrophages or keratinocytes. Importantly, the 7e-SMAMP-liposomes completely eradicated biofilms produced by Staphylococcus aureus and Escherichia coli above concentrations of 6.25 μg/mL, whereas in Pseudomonas aeruginosa the eradication reached 75 % at the same concentration. Incorporation of 7e-SMAMP in liposomes improved both the inhibition of biofilm formation as well as biofilm eradication in vitro, as compared to non-formulated antimicrobial, therefore confirming its potential as a novel therapeutic option for bacteria-infected chronic wounds

    [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The observation that human meningioma cells strongly express somatostatin receptor (SSTR 2) was the rationale to analyze retrospectively in how far DOTATOC PET/CT is helpful to improve target volume delineation for intensity modulated radiotherapy (IMRT).</p> <p>Patients and Methods</p> <p>In 26 consecutive patients with preferentially skull base meningioma, diagnostic magnetic resonance imaging (MRI) and planning-computed tomography (CT) was complemented with data from [<sup>68</sup>Ga]-DOTA-D Phe<sup>1</sup>-Tyr<sup>3</sup>-Octreotide (DOTATOC)-PET/CT. Image fusion of PET/CT, diagnostic computed tomography, MRI and radiotherapy planning CT as well as target volume delineation was performed with OTP-Masterplan<sup>®</sup>. Initial gross tumor volume (GTV) definition was based on MRI data only and was secondarily complemented with DOTATOC-PET information. Irradiation was performed as EUD based IMRT, using the Hyperion Software package.</p> <p>Results</p> <p>The integration of the DOTATOC data led to additional information concerning tumor extension in 17 of 26 patients (65%). There were major changes of the clinical target volume (CTV) which modify the PTV in 14 patients, minor changes were realized in 3 patients. Overall the GTV-MRI/CT was larger than the GTV-PET in 10 patients (38%), smaller in 13 patients (50%) and almost the same in 3 patients (12%). Most of the adaptations were performed in close vicinity to bony skull base structures or after complex surgery. Median GTV based on MRI was 18.1 cc, based on PET 25.3 cc and subsequently the CTV was 37.4 cc. Radiation planning and treatment of the DOTATOC-adapted volumes was feasible.</p> <p>Conclusion</p> <p>DOTATOC-PET/CT information may strongly complement patho-anatomical data from MRI and CT in cases with complex meningioma and is thus helpful for improved target volume delineation especially for skull base manifestations and recurrent disease after surgery.</p

    Suppression of tunneling by interference in half-integer--spin particles

    Full text link
    Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.Comment: 14 pages (RevTeX), 2 postscript figures available upon reques

    Macroscopic Quantum Tunneling of a Domain Wall in a Ferromagnetic Metal

    Full text link
    The macroscopic quantum tunneling of a planar domain wall in a ferromagnetic metal is studied based on the Hubbard model. It is found that the ohmic dissipation is present even at zero temperature due to the gapless Stoner excitation, which is the crucial difference from the case of the insulating magnet. The dissipative effect is calculated as a function of width of the wall and is shown to be effective in a thin wall and in a weak ferromagnet. The results are discussed in the light of recent experiments on ferromagnets with strong anisotropy. PACS numbers:75.60.Ch, 03.65.Sq, 75.10.LpComment: 13page

    Dissociations within nondeclarative memory in Huntington's disease.

    Full text link

    Delta-like protein 3 expression in paired chemonaive and chemorelapsed small cell lung cancer samples

    Get PDF
    Rovalpituzumab tesirine (Rova-T), an antibody-drug conjugate directed against Delta-like protein 3 (DLL3), is under development for patients with small cell lung cancer (SCLC). DLL3 is expressed on the majority of SCLC samples. Because SCLC is rarely biopsied in the course of disease, data regarding DLL3 expression in relapses is not available. The aim of this study was to investigate the expression of DLL3 in chemorelapsed (but untreated with Rova-T) SCLC samples and compare the results with chemonaive counterparts. Two evaluation methods to assess DLL3 expression were explored. Additionally, we assessed if DLL3 expression of chemorelapsed and/or chemonaive samples has prognostic impact and if it correlates with other clinicopathological data. The study included 30 paired SCLC samples, which were stained with an anti DLL3 antibody. DLL3 expression was assessed using tumor proportion score (TPS) and H-score and was categorized as DLL3 low (TPS &lt; 50%, H-score ≤ 150) and DLL3 high (TPS ≥ 50%, H-score &gt; 150). Expression data were correlated with clinicopathological characteristics. Kaplan-Meier curves were used to illustrate overall survival (OS) depending on DLL3 expression in chemonaive and chemorelapsed samples, respectively, and depending on dynamics of expression during course of therapy. DLL3 was expressed in 86.6% chemonaive and 80% chemorelapsed SCLC samples without significant differences between the two groups. However, the extent of expression varied in a substantial proportion of pairs (36.6% with TPS, 43.3% with H-score), defined as a shift from low to high or high to low expression. TPS and H-score provided comparable results. There were no profound correlations with clinicopathological data. Survival analysis revealed a trend toward a more favorable OS in DLL low-expressing chemonaive SCLC (p = 0.57) and, in turn, in DLL3 high-expressing chemorelapsed SCLC (p = 0.42) as well as in SCLC demonstrating a shift from low to high expression (p = 0.56) without being statistically significant. This is the first study to investigate DLL3 expression in a large cohort of rare paired chemonaive-chemorelapsed SCLC specimens. Comparative analysis revealed that DLL3 expression was not stable during the course of therapy, suggesting therapy-based alterations. Unlike in chemonaive samples, a high DLL3 expression in chemorelapsed samples indicated a trend for a more favorable prognosis. Our results highlight the importance to investigate DLL3 in latest chemorelapsed SCLC tumor tissue
    corecore