43 research outputs found

    Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal

    Get PDF
    Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase–mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.publishedVersio

    Molecular Imaging of endometrial sentinel lymph nodes utilizing fluorescent-labeled Tilmanocept during robotic-assisted surgery in a porcine model.

    No full text
    Molecular imaging with a fluorescent version of Tilmanocept may permit an accurate and facile detection of sentinel nodes of endometrial cancer. Tilmanocept accumulates in sentinel lymph nodes (SLN) by binding to a cell surface receptor unique to macrophages and dendritic cells. Four female Yorkshire pigs underwent cervical stromal injection of IRDye800-Tilmanocept, a molecular imaging agent tagged with near-infrared fluorescent dye and radiolabeled with gallium-68 and technetium-99m. PET/CT scans 1.5 hours post-injection provided pre-operative SLN mapping. Robotic-assisted lymphadenectomy was performed two days after injection, using the FireFly imaging system to identify nodes demonstrating fluorescent signal. After removal of fluorescent nodes, pelvic and periaortic node dissections were performed. Nodes were assayed for technetium-99m activity, and SLNs were established using the "10%-rule", requiring that the radioactivity of additional SLNs be greater than 10% of the "hottest" SLN. Thirty-four nodal samples were assayed ex vivo for radioactivity. All the SLNs satisfying the "10%-rule" were detected using the FireFly system. Five fluorescent nodes were detected, corresponding with preoperative PET/CT scan. Three pigs had one SLN and one pig had two SLNs, with 100% concordance between fluorescence and radioactivity. Fluorescent-labeled Tilmanocept permits real-time intraoperative detection of SLNs during robotic-assisted lymphadenectomy for endometrial cancer in a porcine model. When radiolabeled with gallium-68, Tilmanocept allows for preoperative localization of SLNs using PET/CT, and shows specificity to SLNs with persistent fluorescent signal, detectable using the FireFly system, for two days post-injection. In conclusion, these findings suggest that a phase I trial in human subjects is warranted, and that a long-term goal of an intra-operative administration of non-radioactive fluorescent-labeled Tilmanocept is possible

    Enzyme-Directed Assembly of Nanoparticles in Tumors Monitored by in Vivo Whole Animal Imaging and ex Vivo Super-Resolution Fluorescence Imaging

    No full text
    Matrix metalloproteinase enzymes, overexpressed in HT-1080 human fibrocarcinoma tumors, were used to guide the accumulation and retention of an enzyme-responsive nanoparticle in a xenograft mouse model. The nanoparticles were prepared as micelles from amphiphilic block copolymers bearing a simple hydrophobic block and a hydrophilic peptide brush. The polymers were end-labeled with Alexa Fluor 647 dyes leading to the formation of labeled micelles upon dialysis of the polymers from DMSO/DMF to aqueous buffer. This dye-labeling strategy allowed the presence of the retained material to be visualized via whole animal imaging in vivo and in ex vivo organ analysis following intratumoral injection into HT-1080 xenograft tumors. We propose that the material is retained by virtue of an enzyme-induced accumulation process whereby particles change morphology from 20 nm spherical micelles to micrometer-scale aggregates, kinetically trapping them within the tumor. This hypothesis is tested here via an unprecedented super-resolution fluorescence analysis of ex vivo tissue slices confirming a particle size increase occurs concomitantly with extended retention of responsive particles compared to unresponsive controls

    Hollow iron-silica nanoshells for enhanced high intensity focused ultrasound.

    No full text
    BackgroundHigh intensity-focused ultrasound (HIFU) is an alterative ablative technique currently being investigated for local treatment of breast cancer and fibroadenomas. Current HIFU therapies require concurrent magnetic resonance imaging monitoring. Biodegradable 500 nm perfluoropentane-filled iron-silica nanoshells have been synthesized as a sensitizing agent for HIFU therapies, which aid both mechanical and thermal ablation of tissues. In low duty cycle high-intensity applications, rapid tissue damage occurs from mechanical rather than thermal effects, which can be monitored closely by ultrasound obviating the need for concurrent magnetic resonance imaging.Materials and methodsIron-silica nanoshells were synthesized by a sol-gel method on polystyrene templates and calcined to yield hollow nanoshells. The nanoshells were filled with perfluoropentane and injected directly into excised human breast tumor, and intravenously (IV) into healthy rabbits and Py8119 tumor-bearing athymic nude mice. HIFU was applied at 1.1 MHz and 3.5 MPa at a 2% duty cycle to achieve mechanical ablation.ResultsEx vivo in excised rabbit livers, the time to visually observable damage with HIFU was 20 s without nanoshells and only 2 s with nanoshells administered IV before sacrifice. Nanoshells administered IV into nude mice with xenograft tumors were activated in vivo by HIFU 24 h after administration. In this xenograft model, applied HIFU resulted in a 13.6 ± 6.1 mm(3) bubble cloud with the IV injected particles and no bubble cloud without particles.ConclusionsIron-silica nanoshells can reduce the power and time to perform HIFU ablative therapy and can be monitored by ultrasound during low duty cycle operation
    corecore