24 research outputs found

    A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intraindividual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available

    Distinctive waves of innate immune response in the retina in experimental autoimmune encephalomyelitis

    Get PDF
    Neurodegeneration mediates neurological disability in inflammatory demyelinating diseases of the CNS. The role of innate immune cells in mediating this damage has remained controversial with evidence for destructive and protective effects. This has complicated efforts to develop treatment. The time sequence and dynamic evolution of the opposing functions are especially unclear. Given limits of in vivo monitoring in human diseases such as multiple sclerosis (MS), animal models are warranted to investigate the association and timing of innate immune activation with neurodegeneration. Using noninvasive in vivo retinal imaging of experimental autoimmune encephalitis (EAE) in CX3CR1(GFP/+)-knock-in mice followed by transcriptional profiling, we are able to show 2 distinct waves separated by a marked reduction in the number of innate immune cells and change in cell morphology. The first wave is characterized by an inflammatory phagocytic phenotype preceding the onset of EAE, whereas the second wave is characterized by a regulatory, antiinflammatory phenotype during the chronic stage. Additionally, the magnitude of the first wave is associated with neuronal loss. Two transcripts identified - growth arrest-specific protein 6 (GAS6) and suppressor of cytokine signaling 3 (SOCS3) - might be promising targets for enhancing protective effects of microglia in the chronic phase after initial injury

    Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. METHODS: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. RESULTS: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). CONCLUSIONS: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics

    Biomarkers of Multiple Sclerosis

    Get PDF
    The search for an ideal multiple sclerosis biomarker with good diagnostic value, prognostic reference and an impact on clinical outcome has yet to be realized and is still ongoing. The aim of this review is to establish an overview of the frequent biomarkers for multiple sclerosis that exist to date. The review summarizes the results obtained from electronic databases, as well as thorough manual searches. In this review the sources and methods of biomarkers extraction are described; in addition to the description of each biomarker, determination of the prognostic, diagnostic, disease monitoring and treatment response values besides clinical impact they might possess. We divided the biomarkers into three categories according to the achievement method: laboratory markers, genetic-immunogenetic markers and imaging markers. We have found two biomarkers at the time being considered the gold standard for MS diagnostics. Unfortunately, there does not exist a single solitary marker being able to present reliable diagnostic value, prognostic value, high sensitivity and specificity as well as clinical impact. We need more studies to find the best biomarker for MS.publishersversionPeer reviewe

    A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis.

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intra-individual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available

    A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intra-individual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available

    OmixAnalyzer – A Web-Based System for Management and Analysis of High-Throughput Omics Data Sets

    No full text
    These authors contributed equally to this paper. Abstract. Current projects in Systems Biology often produce a multitude of different high-throughput data sets that need to be managed, processed, and analyzed in an integrated fashion. In this paper, we present the OmixAnalyzer, a web-based tool for management and analysis of heterogeneous omics data sets. It currently supports gene microarrays, miR-NAs, and exon-arrays; support for mass spectrometry-based proteomics is on the way, and further types can easily be added due to its plug-andplay architecture. Distinct from competitor systems, the OmixAnalyzer supports management, analysis, and visualization of data sets; it features a mature system of access rights, handles heterogeneous data sets including metadata, supports various import and export formats, includes pipelines for performing all steps of data analysis from normalization and quality control to differential analysis, clustering and functional enrichment, and it is capable of producing high quality figures and reports. The system builds only on open source software and is available on request as sources or as a ready-to-run software image. An instance of the tool is available for testing at omixanalyzer.informatik.hu-berlin.de.

    The autoimmune risk gene ZMIZ1 is a vitamin D responsive marker of a molecular phenotype of multiple sclerosis

    No full text
    Multiple Sclerosis (MS) is a neurological condition driven in part by immune cells from the peripheral circulation, the targets for current successful therapies. The autoimmune and MS risk gene ZMIZ1 is underexpressed in blood in people with MS. We show that, from three independent sets of transcriptomic data, expression of ZMIZ1 is tightly correlated with that of hundreds of other genes. Further we show expression is partially heritable (heritability 0.26), relatively stable over time, predominantly in plasmacytoid dendritic cells and non-classical monocytes, and that levels of ZMIZ1 protein expression are reduced in MS. ZMIZ1 gene expression is increased in response to calcipotriol (1,25 Vitamin D3) (p < 0.0003) and associated with Epstein Barr Virus (EBV) EBNA-1 antibody titre (p < 0.004). MS therapies fingolimod and dimethyl fumarate altered blood ZMIZ1 gene expression compared to untreated MS. The phenotype indicates susceptibility to MS, and may correspond with clinical response and represent a novel clinical target
    corecore