34 research outputs found

    Diversity of immunoglobulin light chain genes in non-teleost ray-finned fish uncovers IgL subdivision into five ancient isotypes

    Get PDF
    <p>The aim of this study was to fill important gaps in the evolutionary history of immunoglobulins by examining the structure and diversity of IgL genes in non-teleost ray-finned fish. First, based on the bioinformatic analysis of recent transcriptomic and genomic resources, we experimentally characterized the IgL genes in the chondrostean fish, Acipenser ruthenus (sterlet). We show that this species has three loci encoding IgL kappa-like chains with a translocon-type gene organization and a single VJC cluster, encoding homogeneous lambda-like light chain. In addition, sterlet possesses sigma-like VL and J-CL genes, which are transcribed separately and both encode protein products with cleavable leader peptides. The Acipenseriformes IgL dataset was extended by the sequences mined in the databases of species belonging to other non-teleost lineages of ray-finned fish: Holostei and Polypteriformes. Inclusion of these new data into phylogenetic analysis showed a clear subdivision of IgL chains into five groups. The isotype described previously as the teleostean IgL lambda turned out to be a kappa and lambda chain paralog that emerged before the radiation of ray-finned fish. We designate this isotype as lambda-2. The phylogeny also showed that sigma-2 IgL chains initially regarded as specific for cartilaginous fish are present in holosteans, polypterids, and even in turtles. We conclude that there were five ancient IgL isotypes, which evolved differentially in various lineages of jawed vertebrates.</p

    Influence of Structural Disorder on the Magnetic Order in FeRhCr Alloys

    Get PDF
    Magnetic phase transitions in alloys are highly influenced by the sample preparation techniques. In the present research, electronic and magnetic properties of Fe48Cr3Rh49 alloys with varying cooling rates were studied, both experimentally and theoretically. The degree of crystalline ordering was found to depend on the cooling rate employed after annealing the alloy. Modeling of alloy structures with different degrees of crystalline ordering was carried out via strategic selection of substitution positions and distances between chromium atoms. Theoretical calculations revealed significant changes in magnetic and electronic properties of the alloy with different substitutions. A comprehensive analysis of the calculated and experimental data established correlations between structural characteristics and parameters governing the magnetic phase transition. In this study, we also developed a method for evaluating the magnetic properties of the alloys obtained under different heat treatments. The proposed approach integrates atom substitution and heat treatment parameters, offering precise control over alloy manufacturing to effectively tune their essential magnetic properties

    Cytogenomic Profile of Uterine Leiomyoma: In Vivo vs. In Vitro Comparison

    Get PDF
    We performed a comparative cytogenomic analysis of cultured and uncultured uterine leiomyoma (UL) samples. The experimental approach included karyotyping, aCGH, verification of the detected chromosomal abnormalities by metaphase and interphase FISH, MED12 mutation analysis and telomere measurement by Q-FISH. An abnormal karyotype was detected in 12 out of 32 cultured UL samples. In five karyotypically abnormal ULs, MED12 mutations were found. The chromosomal abnormalities in ULs were present mostly by complex rearrangements, including chromothripsis. In both karyotypically normal and abnormal ULs, telomeres were ~40% shorter than in the corresponding myometrium, being possibly prerequisite to chromosomal rearrangements. The uncultured samples of six karyotypically abnormal ULs were checked for the detected chromosomal abnormalities through interphase FISH with individually designed DNA probe sets. All chromosomal abnormalities detected in cultured ULs were found in corresponding uncultured samples. In all tumors, clonal spectra were present by the karyotypically abnormal cell clone/clones which coexisted with karyotypically normal ones, suggesting that chromosomal abnormalities acted as drivers, rather than triggers, of the neoplastic process. In vitro propagation did not cause any changes in the spectrum of the cell clones, but altered their ratio compared to uncultured sample. The alterations were unique for every UL. Compared to its uncultured counterpart, the frequency of chromosomally abnormal cells in the cultured sample was higher in some ULs and lower in others. To summarize, ULs are characterized by both inter- and intratumor genetic heterogeneity. Regardless of its MED12 status, a tumor may be comprised of clones with and without chromosomal abnormalities. In contrast to the clonal spectrum, which is unique and constant for each UL, the clonal frequency demonstrates up or down shifts under in vitro conditions, most probably determined by the unequal ability of cells with different genetic aberrations to exist outside the body

    Electronic entropy change in Ni-doped FeRh

    Get PDF
    The net entropy change corresponding to the free charge carriers in a Ni-doped FeRh bulk polycrystal was experimentally evaluated in a single sample using low-temperature heat capacity experiments with applied magnetic field and using Seebeck effect and Hall coefficient measurements at high temperatures across the first-order phase transition. From the heat capacity data, a value for the electronic entropy change dSel=8.9 J/(kg K) was extracted. The analysis of the Seebeck coefficient allows tracing the change of the electronic entropy jump with applied magnetic field directly across the transition. The difference in electronic entropy contribution obtained is as high as 10% from 0.1 to 6 T

    Steric Manipulation of the Reductive Reactivity of Ytterbocenes toward 2-(((2,6-Diisopropylphenyl)imino)methyl)pyridine: Insertion of the N:C Bond into the Yb-Indenyl Bond or Oxidative Cleavage of the h5 Yb-Cp (Cp = C13H9, Cp) Bond.

    No full text
    International audienceUnprecedented N=C bond insertion into the 5 Yb-C9H7 bond occurs in the reaction of 2-(((2,6-diisopropylphenyl)imino)methyl)pyridine with (C9H7)2Yb(THF)2 and affords the Yb(III) derivative [Yb(5-C9H7){N(2,6-i-Pr2C6H3)CH(C9H7)(C5H4N)}{2,6-i-Pr2C6H3NCH(C5H4N)-}]. For the complexes Cp2Yb(THF)2 (Cp = C13H9, Cp*) coordinated by bulkier 5 ligands the same reaction results in an oxidative cleavage of the 5 Yb-Cp (Cp = C13H9, Cp*) bond and formation of [Yb{(2,6-i-Pr2C6H5NCH(C5H4N)-}3] and [Yb(C5Me5){(2,6-i-Pr2C6H3NCH(C5H4N)-}2], respectively

    VH3-53/66-Class RBD-Specific Human Monoclonal Antibody iB20 Displays Cross-Neutralizing Activity against Emerging SARS-CoV-2 Lineages

    No full text
    Immune evasion of SARS-CoV-2 undermines current strategies tocounteract the pandemic, with the efficacy of therapeutic virus-neutralizing monoclonal antibodies (nAbs) being affected the most. In this work, we asked whether two previously identified human cross-neutralizing nAbs, iB14 (class VH1-58) and iB20 (class VH3-53/66), are capable of neutralizing the recently emerged Omicron (BA.1) variant. Both nAbs were found to bind the Omicron RBD with a nanomolar affinity, yet they displayed contrasting functional features. When tested against Omicron, the neutralizing activity of iB14 was reduced 50-fold, whereas iB20 displayed a surprising increase in activity. Thus, iB20 is a unique representative of the VH3-53/66-class of nAbs in terms of breadth of neutralization, which establishes it as a candidate for COVID-19 therapy and prophylactics

    Doping nature of group V elements in ZnO single crystals grown from melts at high pressure

    No full text
    ZnO single crystals doped with group-V elements have been grown from melt at high pressure. Dopants were introduced in several forms such as Sb2O3, P, As, Sb and Zn3X2 (X = P, As, Sb) in the high-pressure cell. Systematic studies of morphology were performed using optical microscopy and scanning electron microscopy. Crystal structure and lattice parameters were studied using X-ray diffraction and X-ray crystallography. Crystals exhibited distinct changes of size, shape and color compared to undoped ZnO melt-grown single crystals due to the dopants influence. X-ray photoelectron spectroscopy was used to determine valence states of group-V elements when incorporated in ZnO lattice. Photoluminescence, Raman spectroscopy and electron paramagnetic resonance spectroscopy were employed to investigate the nature of defects formed as the result of doping. Formation of VZn and VZn-complexes was confirmed and their concentrations were measured. Estimates of the number of VZn per one dopant atom showed that the ratio is noticeably higher than the one suggested for the shallow complex As(P, Sb)Zn-2VZn commonly regarded as responsible for acceptor properties in ZnO
    corecore