19 research outputs found

    Evidence for Possible Late Paleozoic Alleghenian Deformation Structures in the Devonian Rocks of Erie County, Ohio, USA

    Get PDF
    Partially exposed bedrock beneath Pleistocene glacial till in Erie County (north-central Ohio) displays unusual structural deformation in the Devonian Berea Sandstone, Bedford Shale, and Ohio Shale. These folded and faulted units are exposed in creeks as anticlines and synclines. Past studies of this area proposed Pleistocene ice movement and soft-sediment deformation during the Late Paleozoic as the deformation mechanisms, but these hypotheses cannot explain the extent of layer displacement or the contradiction between the southwest travel direction of the ice sheet and the structural sense of motion on the folded units. A new interpretation using field data and constructing geologic profiles explains the development of these structures. This study investigated 17 anticlines that trend in different directions. Four of these anticlines are tightly folded with steep or overturned flanks and thrust-faulted Ohio Shale in their cores. Structural analysis of these folds shows that the incompetent shaly units of the Plum Brook–Ohio–Bedford and competent Berea Sandstone were folded above the Delaware–Niagara carbonates as a result of the compressional stress during the Late Paleozoic. Development of these tight or overturned folds, and change in trend of the anticlines, is caused by unusual stratigraphic thickness variations in the Berea and Bedford units. Preserved and undeformed fine sedimentary structures, and sharply faulted beds, in the Berea and Bedford indicate that soft-sediment deformation was not the cause of the regional structural deformation. Finally, the absence of physical features of glacially deformed bedrock demonstrates that Pleistocene glacial ice shove was not the cause of deformed bedrock units in the study area

    Zircon U-Pb, Hf and O isotope constraints on growth versus reworking of continental crust in the subsurface Grenville orogen, Ohio, USA

    Get PDF
    Combined U-Pb, O and Hf isotope data in zircon allows discrimination between juvenile and reworked crust, and is therefore a useful tool for understanding formation and evolution of the continental crust. The crustal evolution of basement rocks in central North America (Laurentia) is poorly constrained, as it is almost entirely overlain by Palaeozoic cover. In order to improve our understanding of the evolution of this region we present U-Pb, O and Hf isotope data from zircon in drill-core samples from the subsurface basement of Ohio. The Hf isotope data suggests juvenile crust formation at similar to 1650 Ma followed by continued reworking of a single reservoir. This similar to 1650 Ma reservoir was tapped at similar to 1450 Ma during the formation of the Granite-Rhyolite Province and subsequently reworked again during the Grenvillian orogeny. The similar to 1650 Ma crust formation model age for the suite of samples along with the presence of similar to 1650 Ma magmatic rocks suggests an eastward extension of the Mazatzal Province (or Mazatzal-like crust) and makes it a possible protolith to the subsurface basement of Ohio and surrounding Mesoproterozoic (i.e. Grenville-age) rocks. The eastward extension of this similar to 1650 Ma crustal reservoir into Ohio requires a revision of the crustal boundary defined by Nd isotopic data to be located further east, now overlapping with the Grenville front magnetic lineament in Ohio. In fact, the easternmost sample in this study is derived from a more depleted reservoir. This limits the extent of >1.5 Ga basement in subsurface Ohio and constrains the location of the crustal boundary. Further, syn-orogenic magmatism at similar to 1050 Ma suggests a potential extrapolation of the Interior Magmatic Belt into Ohio. Oxygen isotopic data in zircon suggests that during Grenvillian metamorphism, zircon recrystallisation occurred in the presence of heavy delta O-18 fluids resulting in zircon with elevated delta O-18 values. (C) 2015 Elsevier B.V. All rights reserved

    Measuring and predicting reservoir heterogeneity in complex deposystems: the Late Cambrian Rose Run sandstone of Eastern Ohio and Western Pennsylvania

    Get PDF
    A cooperative two-year multidisciplinary research program, conducted by the Ohio Division of Geological Survey (ODGS) and the Pennsylvania Bureau of Topographic and Geologic Survey (PTGS), designed to measure and predict reservoir heterogeneity in the Upper Cambrian Rose Run sandstone in those two states.257 pages, 125 figures (including numerous maps, cross sections, seismic lines, and photographs of rock thin sections), 6 tables, and five case studies of Rose Run oil and gas fields.Prepared for U.S. Department of Energy, Assistant Secretary for Fossil Energy. Work performed under Contract No. DE-AC22-90BC14657.This two-year investigation of the Upper Cambrian Rose Run sandstone in Eastern Ohio and Western Pennsylvania was conducted by the Ohio and Pennsylvania Geological Surveys in a cost-sharing agreement with the U.S. Department of Energy under the auspices of the Appalachian Oil and Natural Gas Research Consortium, which consists of West Virginia University and the state geological surveys of Kentucky, Ohio, Pennsylvania, and West Virginia

    Optical investigation of three‐dimensional human skin equivalents: A pilot study

    Get PDF
    Human skin equivalents (HSEs) are three-dimensional living models of human skin that are prepared in vitro by seeding cells onto an appropriate scaffold. They recreate the structure and biological behaviour of real skin, allowing the investigation of processes such as keratinocyte differentiation and interactions between the dermal and epidermal layers. However, for wider applications, their optical and mechanical properties should also replicate those of real skin. We therefore conducted a pilot study to investigate the optical properties of HSEs. We compared Monte Carlo simulations of (a) real human skin and (b) two-layer optical models of HSEs with (c) experimental measurements of transmittance through HSE samples. The skin layers were described using a hybrid collection of optical attenuation coefficients. A linear relationship was observed between the simulations and experiments. For samples thinner than 0.5 mm, an exponential increase in detected power was observed due to fewer instances of absorption and scattering

    Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas

    Get PDF
    RNA polymerase II mediates the transcription of all protein-coding genes in eukaryotic cells, a process that is fundamental to life. Genomic mutations altering this enzyme have not previously been linked to any pathology in humans, which is a testament to its indispensable role in cell biology. On the basis of a combination of next-generation genomic analyses of 775 meningiomas, we report that recurrent somatic p.Gln403Lys or p.Leu438_His439del mutations in POLR2A, which encodes the catalytic subunit of RNA polymerase II (ref. 1), hijack this essential enzyme and drive neoplasia. POLR2A mutant tumors show dysregulation of key meningeal identity genes including WNT6 and ZIC1/ZIC4. In addition to mutations in POLR2A, NF2, SMARCB1, TRAF7, KLF4, AKT1, PIK3CA, and SMO4 we also report somatic mutations in AKT3, PIK3R1, PRKAR1A, and SUFU in meningiomas. Our results identify a role for essential transcriptional machinery in driving tumorigenesis and define mutually exclusive meningioma subgroups with distinct clinical and pathological features

    Structure contour map on the Precambrian unconformity surface in Ohio and related basement features a description to accompany Division of Geological Survey map PG-23

    No full text
    Title from title screen.; Includes bibliographical references (p. 6-10).; Harvested from the web on 7/24/0
    corecore