233 research outputs found

    Classification Of Nanopolymers

    Get PDF
    Nanopolymers with different structures, shapes, and functional forms have recently been prepared using several techniques. Nanopolymers are the most promising basic building blocks for mounting complex and simple hierarchical nanosystems. The applications of nanopolymers are extremely broad and polymer-based nanotechnologies are fast emerging. We propose a nanopolymer classification scheme based on self-assembled structures, non self-assembled structures, and on the number of dimensions in the nanometer range (nD). © 2008 IOP Publishing Ltd.1001Ikkala, O., Brinke Ten, G., (2004) Chem. Commu., p. 213

    A Multi-Channel Low-Power System-on-Chip for in Vivo Recording and Wireless Transmission of Neural Spikes

    Get PDF
    This paper reports a multi-channel neural spike recording system-on-chip with digital data compression and wireless telemetry. The circuit consists of 16 amplifiers, an analog time-division multiplexer, a single 8 bit analog-to-digital converter, a digital signal compression unit and a wireless transmitter. Although only 16 amplifiers are integrated in our current die version, the whole system is designed to work with 64, demonstrating the feasibility of a digital processing and narrowband wireless transmission of 64 neural recording channels. Compression of the raw data is achieved by detecting the action potentials (APs) and storing 20 samples for each spike waveform. This compression method retains sufficiently high data quality to allow for single neuron identification (spike sorting). The 400 MHz transmitter employs a Manchester-Coded Frequency Shift Keying (MC-FSK) modulator with low modulation index. In this way, a 1.25 Mbit/s data rate is delivered within a limited band of about 3 MHz. The chip is realized in a 0.35 um AMS CMOS process featuring a 3 V power supply with an area of 3.1x 2.7 mm2. The achieved transmission range is over 10 m with an overall power consumption for 64 channels of 17.2 mW. This figure translates into a power budget of 269uW per channel, in line with published results but allowing a larger transmission distance and more efficient bandwidth occupation of the wireless link. The integrated circuit was mounted on a small and light board to be used during neuroscience experiments with freely-behaving rats. Powered by 2 AAA batteries, the system can continuously work for more than 100 hours allowing for long-lasting neural spike recordings

    Synthesis And Characterization Of Boron-doped Carbon Nanotubes

    Get PDF
    Boron-doped carbon nanotubes have been prepared by chemical vapour deposition of ethyl alcohol doped with B2O3 using a hot-filament system. Multi-wall carbon nanotubes of diameters in the range of 30 - 100 nm have been observed by field emission scanning electron microscopy (FESEM). Raman measurements indicated that the degree of C-C sp2 order decreased with boron doping. Lowest threshold fields achieved were 1.0 V/μm and 2.1 V/μm for undoped and boron-doped samples, respectively. © 2008 IOP Publishing Ltd.100PART 5Bonard, J.M., Kind, H., Stöckli, T., Nilsson, L.O., (2001) Sol. State Electron., 45, p. 893Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, R., Carroll, D.L., Vieira, S.M.C., Rego, C.A., (2002) Appl.Phys.Lett., 81, p. 2647Mondal, K.C., Coville, N.J., Witcomb, M.J., Tejral, G., Havel, J., (2007) Chem. Phys. Lett., , in pressChen, C.F.C., Tsai, C.L., Lin, C.L., (2003) Diam. Rel. Mater., 12, p. 1500Sharma, R.B., Late Joag, D.S., Govindaraj Rao, C.N.R., (2006) Chem.Phys.Lett, 428, p. 102Mennella, V., Monaco, G., Colanoeli, L., Bussoletti, E., (1995) Carbon, 33 (2), p. 11

    Collective intelligence for promoting changes in behaviour: a case study on energy conservation

    Get PDF
    Climate change is one of the biggest challenges humanity faces today. Despite of high investments in technology, battling climate change is futile without the participation of the public, and changing their perception and habits. Collective intelligence tools can play an important role in translating this “distant” concept that is climate change into practical hints for everyday life. In this paper, we report a case study grounded on collective intelligence tools to collaboratively build knowledge around energy conservation. A preliminary study to raise energy awareness in an academic environment is summarised, setting the scene to a more ambitious initiative based on personal stories to transform energy awareness into behaviour change. The role of the collective intelligence tools and other technical artefacts involved are discussed, suggesting strategies and features that contributed (or not) to users’ engagement and collective awareness. Lessons learned from both studies are reported with a sociotechnical approach as implications for design pursuing behaviour change

    Beetroot supplementation in women enjoying exercise together (BEE SWEET): Rationale, design and methods

    Get PDF
    Background: Postmenopausal women exhibit higher rates of disability and cardiovascular disease (CVD) with aging compared to men. Whereas habitual exercise training is a known strategy to enhance physiologic function in men and premenopausal women, exercise-related adaptations are often modest in postmenopausal women. We propose dietary nitrate (beetroot juice) administered prior to exercise training may be a feasible approach to improve mobility and cardio-metabolic health outcomes in postmenopausal women. Methods: Our randomized, placebo-controlled study aims to determine preliminary effects sizes for changes in functional mobility and endothelium-dependent vasodilation across three study arms: exercise only (EX), exercise + placebo (EX + PL), and exercise + beetroot (EX + BR). Thirty-six postmenopausal women are recruited in small cohorts wherein group exercise is implemented to facilitate social support and adherence to an 8-week training progression. Participants are randomized to one of three study arms (n = 12 per group) following baseline assessments. Post-intervention assessments are used to determine pre-post changes in outcome measures including distance covered during a 6 min walk test, walking economy, muscle speed and power, and endothelial-dependent vasodilation as determined by flow-mediated dilation. Measures of feasibility include recruitment, retention, adherence to exercise prescription, perceived exercise session difficulty, and adverse event rates. Discussion: Evidence-based, translational strategies are needed to optimize exercise training-related adaptations in postmenopausal women. Findings will inform larger randomized clinical trials to determine if pre-exercise consumption of beetroot juice is an efficacious strategy to promote mobility and attenuate CVD disease risk

    The location of the axon initial segment affects the bandwidth of spike initiation dynamics

    Get PDF
    The dynamics and the sharp onset of action potential (AP) generation have recently been the subject of intense experimental and theoretical investigations. According to the resistive coupling theory, an electrotonic interplay between the site of AP initiation in the axon and the somato-dendritic load determines the AP waveform. This phenomenon not only alters the shape of AP recorded at the soma, but also determines the dynamics of excitability across a variety of time scales. Supporting this statement, here we generalize a previous numerical study and extend it to the quantification of the input-output gain of the neuronal dynamical response. We consider three classes of multicompartmental mathematical models, ranging from ball-and-stick simplified descriptions of neuronal excitability to 3D-reconstructed biophysical models of excitatory neurons of rodent and human cortical tissue. For each model, we demonstrate that increasing the distance between the axonal site of AP initiation and the soma markedly increases the bandwidth of neuronal response properties. We finally consider the Liquid State Machine paradigm, exploring the impact of altering the site of AP initiation at the level of a neuronal population, and demonstrate that an optimal distance exists to boost the computational performance of the network in a simple classification task. Copyright

    Monitoramento de safras via Web: um caso de sucesso em pesquisa multidisciplinar.

    Get PDF
    Este trabalho descreve o projeto WebMaps em desenvolvimento na UNICAMP, um esforço multidisciplinar envolvendo ciências agrárias e de computação , cujo objetivo é desenvolver uma plataforma baseada em serviços Web para o planejamento agro-ambiental.SBIAgro 2007

    Elimination of fibrin γ-chain cross-linking by FXIIIa increases pulmonary embolism arising from murine inferior vena cava thrombi

    Get PDF
    The onset of venous thromboembolism, including pulmonary embolism, represents a significant health burden affecting more than 1 million people annually worldwide. Current treatment options are based on anticoagulation, which is suboptimal for preventing further embolic events. In order to develop better treatments for thromboembolism, we sought to understand the structural and mechanical properties of blood clots and how this influences embolism in vivo. We developed a murine model in which fibrin γ-chain cross-linking by activated Factor XIII is eliminated (FGG3X) and applied methods to study thromboembolism at whole-body and organ levels. We show that FGG3X mice have a normal phenotype, with overall coagulation parameters and platelet aggregation and function largely unaffected, except for total inhibition of fibrin γ-chain cross-linking. Elimination of fibrin γ-chain cross-linking resulted in thrombi with reduced strength that were prone to fragmentation. Analysis of embolism in vivo using Xtreme optical imaging and light sheet microscopy demonstrated that the elimination of fibrin γ-chain cross-linking resulted in increased embolization without affecting clot size or lysis. Our findings point to a central previously unrecognized role for fibrin γ-chain cross-linking in clot stability. They also indirectly indicate mechanistic targets for the prevention of thrombosis through selective modulation of fibrin α-chain but not γ-chain cross-linking by activated Factor XIII to reduce thrombus size and burden, while maintaining clot stability and preventing embolism

    Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells

    Get PDF
    Significant inroads have been made to understand cerebellar cortical processing but neural coding at the output stage of the cerebellum in the deep cerebellar nuclei (DCN) remains poorly understood. The DCN are unlikely to just present a relay nucleus because Purkinje cell inhibition has to be turned into an excitatory output signal, and DCN neurons exhibit complex intrinsic properties. In particular, DCN neurons exhibit a range of rebound spiking properties following hyperpolarizing current injection, raising the question how this could contribute to signal processing in behaving animals. Computer modeling presents an ideal tool to investigate how intrinsic voltage-gated conductances in DCN neurons could generate the heterogeneous firing behavior observed, and what input conditions could result in rebound responses. To enable such an investigation we built a compartmental DCN neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than −70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum
    corecore