336 research outputs found

    Conditions for Almost Global Attractivity of a Synchronous Generator Connected to an Infinite Bus

    Get PDF
    Conditions for existence and global attractivity of the equilibria of a realistic model of a synchronous generator with constant field current connected to an infinite bus are derived. First, necessary and sufficient conditions for existence and uniqueness of equilibrium points are provided. Then, sufficient conditions for local asymptotic stability and almost global attractivity of one of these equilibria are given. The analysis is carried out by employing a new Lyapunov–like function to establish convergence of bounded trajectories, while the latter is proven using the powerful theoretical framework of cell structures pioneered by Leonov and Noldus. The efficiency of the derived sufficient conditions is illustrated via extensive numerical experiments based on two benchmark examples taken from the literature

    Almost Global Attractivity of a Synchronous Generator Connected to an Infinite Bus

    Get PDF
    The problem of deriving verifiable conditions for stability of the equilibria of a realistic model of a synchronous generator with constant field current connected to an infinite bus is studied in the paper. Necessary and sufficient conditions for existence and uniqueness of equilibrium points are provided. Furthermore, sufficient conditions for almost global attractivity are given. To carry out this analysis a new Lyapunov–like function is proposed to establish convergence of bounded trajectories, while the latter is proven using the powerful theoretical framework of cell structures pioneered by Leonov and Noldus

    Relaxing the conditions of ISS for multistable periodic systems

    Get PDF
    The input-to-state stability property of nonlinear dynamical systems with multiple invariant solutions is analyzed under the assumption that the system equations are periodic with respect to certain state variables. It is shown that stability can be concluded via a sign-indefinite function, which explicitly takes the systems’ periodicity into account. The presented approach leverages some of the difficulties encountered in the analysis of periodic systems via positive definite Lyapunov functions proposed in Angeli and Efimov (2013, 2015). The new result is established based on the framework of cell structure introduced in Leonov (1974) and illustrated via the global analysis of a nonlinear pendulum with a constant persistent input

    Many-Body Approch to Spin-Dependent Transport in Quantum Dot Systems

    Full text link
    By means of a diagram technique for Hubbard operators we show the existence of a spin-dependent renormalization of the localized levels in an interacting region, e.g. quantum dot, modeled by the Anderson Hamiltonian with two conduction bands. It is shown that the renormalization of the levels with a given spin direction is due to kinematic interactions with the conduction sub-bands of the opposite spin. The consequence of this dressing of the localized levels is a drastically decreased tunneling current for ferromagnetically ordered leads compared to that of paramagnetically ordered leads. Furthermore, the studied system shows a spin-dependent resonant tunneling behaviour for ferromagnetically ordered leads.Comment: 8 pages, 5 figure

    The J_1-J_2 antiferromagnet with Dzyaloshinskii-Moriya interaction on the square lattice: An exact diagonalization study

    Full text link
    We examine the influence of an anisotropic interaction term of Dzyaloshinskii-Moriya (DM) type on the groundstate ordering of the J_1-J_2 spin-1/2-Heisenberg antiferromagnet on the square lattice. For the DM term we consider several symmetries corresponding to different crystal structures. For the pure J_1-J_2 model there are strong indications for a quantum spin liquid in the region of 0.4 < J_2/J_1 < 0.65. We find that a DM interaction influences the breakdown of the conventional antiferromagnetic order by i) shifting the spin liquid region, ii) changing the isotropic character of the groundstate towards anisotropic correlations and iii) creating for certain symmetries a net ferromagnetic moment.Comment: 7 pages, RevTeX, 6 ps-figures, to appear in J. Phys.: Cond. Ma

    A Relaxed Characterization of ISS for Periodic Systems with Multiple Invariant Sets

    Get PDF
    A necessary and sufficient criterion to establish input-to-state stability (ISS) of nonlinear dynamical systems, the dynamics of which are periodic with respect to certain state variables and which possess multiple invariant solutions (equilibria, limit cycles, etc.), is provided. Unlike standard Lyapunov approaches, the condition is relaxed and formulated via a sign-indefinite function with sign-definite derivative, and by taking the system’s periodicity explicitly into account. The new result is established by using the framework of cell structure and it complements the ISS theory of multistable dynamics for periodic systems. The efficiency of the proposed approach is illustrated via the global analysis of a nonlinear pendulum with constant persistent input

    Time Reversal Invariance Violating and Parity Conserving effects in Neutron Deuteron Scattering

    Get PDF
    Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functions, obtained by solving three-body Faddeev equations in configuration space.Comment: There was a technical mistake in calculations due to singular behavior of Yukawa functions at short range. We corrected the integration algorithm. There were some typos which are corrected. arXiv admin note: text overlap with arXiv:1104.305

    Origin of spin-gap in CaV4_4O9_9: effect of frustration and lattice distortion

    Full text link
    We study the origin of spin-gap in recently discovered material CaV4_4O9_9. We analyze the spin-1/21/2 Heisenberg model on the 1/51/5 depleted square lattice with nearest neighbor (nn) and next nearest neighbor (nnn) interactions, in terms of the singlet and triplet states of the 4-spin plaquettes and 2-spin dimers. Phase diagram of the model is obtained within a linear ``spin-wave"-like approximation, and is shown to agree well with the earlier results of QMC simulations for nn interactions. We further propose that the special lattice structure of CaV4_4O9_9 naturally leads to lattice distortions, which enhances the spin-gap via a spin-Peierls mechanism.Comment: 4 pages, RevTex, 2 postscript figures. Latex file and figures have been uuencode

    Hole motion in the Ising antiferromagnet: an application of the recursion method

    Full text link
    We study hole motion in the Ising antiferromagnet using the recursion method. Using the retraceable path approximation we find the hole's Green's function as well as its wavefunction for arbitrary values of t/Jzt/J_z. The effect of small transverse interaction also is taken into account. Our results provide some additional insight into the self-consistent Born approximation.Comment: 8 pages, RevTex, no figures. Accepted for publication in Phys.Rev.

    Diagrammatic theory for Anderson Impurity Model. Stationary property of the thermodynamic potential

    Full text link
    A diagrammatic theory around atomic limit is proposed for normal state of Anderson Impurity Model. The new diagram method is based on the ordinary Wick's theorem for conduction electrons and a generalized Wick's theorem for gtrongly correlated impurity electrons. This last theorem coincides with the definition of Kubo cumulants. For the mean value of the evolution operator a linked cluster theorem is proved and a Dyson's type equations for one-particle propagators are established. The main element of these equations is the correlation function which contains the spin, charge and pairing fluctuations of the system. The thermodynamic potential of the system is expressed through one-particle renormalized Green's functions and the corelation function. The stationary property of the thermodynamic potential is established with respect to the changes of correlation function.Comment: 7 pages, 6 figures, Submitted to PR
    • …
    corecore