142 research outputs found

    Visual Recognition and Categorization on the Basis of Similarities to Multiple Class Prototypes

    Get PDF
    To recognize a previously seen object, the visual system must overcome the variability in the object's appearance caused by factors such as illumination and pose. Developments in computer vision suggest that it may be possible to counter the influence of these factors, by learning to interpolate between stored views of the target object, taken under representative combinations of viewing conditions. Daily life situations, however, typically require categorization, rather than recognition, of objects. Due to the open-ended character both of natural kinds and of artificial categories, categorization cannot rely on interpolation between stored examples. Nonetheless, knowledge of several representative members, or prototypes, of each of the categories of interest can still provide the necessary computational substrate for the categorization of new instances. The resulting representational scheme based on similarities to prototypes appears to be computationally viable, and is readily mapped onto the mechanisms of biological vision revealed by recent psychophysical and physiological studies

    Future Learning Environments for Tomorrow's Schools

    Get PDF
    Teachers who want to prepare their students to cope with an unknown future, must equip them with a set of competencies that are essential for success in society in general and in any enterprise or organizational unit. Therefore, in today's reality, real-life scenarios should dictate the pedagogy and the design of learning environments that will meet the standards of modern working environments. In this paper, we attempt to reexamine content, pedagogy and learning environments in the current era. Based on our experience, we recommend that educational institutions adapt their classrooms by turning them into unique learning environments which will allow for a pedagogy that combines content which has been adapted to the 21st century with advanced and innovative technology in the most appropriate way for acquiring the necessary skills. The goal is that eventually educational systems will affect the real world by introducing innovative pedagogies and learning environments which will make an impact on working environments. This paper focuses on the work that has been carried out over the past three years geared at proposing new characteristics for learning environments in colleges of education

    Weak links and phase slip centers in superconducting MgB2 wires

    Full text link
    MgB2 superconducting wires were produced by the Mg diffusion method. Scanning electron microscopy (SEM), optical microscopy, dispersive x-ray analysis (EDS) and XRD diffraction were used to study the physical structure and content of the wires. Magnetic properties (Tcm, Hc1, Hc2, Jc by the Bean model) were obtained with a SQUID magnetometer, and transport properties (Tcr, Hc2, resistivity and residual resistivity ratio) were measured using a standard four-lead configuration. The V-I characteristics of the wires close to the critical temperature showed a staircase response, which was attributed to the presence of weak links, creating phase slip centers. The origin of those weak links is discussed in relation to their formation and structure.Comment: 7 pages, 7 figures, accepted to Journal of Superconductivit

    Characterizing the Quantum Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology

    Get PDF
    We optimized the performance of quantum confined Stark effect QCSE based voltage nanosensors. A high throughput approach for single particle QCSE characterization was developed and utilized to screen a library of such nanosensors. Type II ZnSe CdS seeded nanorods were found to have the best performance among the different nanosensors evaluated in this work. The degree of correlation between intensity changes and spectral changes of the excitons emission under applied field was characterized. An upper limit for the temporal response of individual ZnSe CdS nanorods to voltage modulation was characterized by high throughput, high temporal resolution intensity measurements using a novel photon counting camera. The measured 3.5 us response time is limited by the voltage modulation electronics and represents about 30 times higher bandwidth than needed for recording an action potential in a neuron.Comment: 36 pages, 6 figure

    A Secreted Form of the Asialoglycoprotein Receptor, sH2a, as a Novel Potential Noninvasive Marker for Liver Fibrosis

    Get PDF
    Background and Aim: The human asialoglycoprotein receptor is a membrane heterooligomer expressed exclusively in hepatocytes. A soluble secreted form, sH2a, arises, not by shedding at the cell surface, but by intracellular cleavage of its membrane-bound precursor, which is encoded by an alternatively spliced form of the receptor H2 subunit. Here we determined and report that sH2a, present at constant levels in serum from healthy individuals is altered upon liver fibrosis, reflecting the status of hepatocyte function. Methods: We measured sH2a levels in serum using a monoclonal antibody and an ELISA assay that we developed, comparing with routine liver function markers. We compared blindly pretreatment serum samples from a cohort of 44 hepatitis C patients, which had METAVIR-scored biopsies, with 28 healthy individuals. Results: sH2a levels varied minimally for the healthy individuals (150621 ng/ml), whereas the levels deviated from this normal range increasingly in correlation with fibrosis stage. A simple algorithm combining sH2a levels with those of alanine aminotransferase allowed prediction of fibrosis stage, with a very high area under the ROC curve of 0.86

    Insulin-Producing Cells Generated from Dedifferentiated Human Pancreatic Beta Cells Expanded In Vitro

    Get PDF
    Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD) cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT). Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2) using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug screening

    Epithelial-Mesenchymal Transition in Cells Expanded In Vitro from Lineage-Traced Adult Human Pancreatic Beta Cells

    Get PDF
    BACKGROUND: In-vitro expansion of functional beta cells from adult human islets is an attractive approach for generating an abundant source of cells for beta-cell replacement therapy of diabetes. Using genetic cell-lineage tracing we have recently shown that beta cells cultured from adult human islets undergo rapid dedifferentiation and proliferate for up to 16 population doublings. These cells have raised interest as potential candidates for redifferentiation into functional insulin-producing cells. Previous work has associated dedifferentiation of cultured epithelial cells with epithelial-mesenchymal transition (EMT), and suggested that EMT generates cells with stem cell properties. Here we investigated the occurrence of EMT in these cultures and assessed their stem cell potential. METHODOLOGY/PRINCIPAL FINDINGS: Using cell-lineage tracing we provide direct evidence for occurrence of EMT in cells originating from beta cells in cultures of adult human islet cells. These cells express multiple mesenchymal markers, as well as markers associated with mesenchymal stem cells (MSC). However, we do not find evidence for the ability of such cells, nor of cells in these cultures derived from a non-beta-cell origin, to significantly differentiate into mesodermal cell types. CONCLUSIONS/SIGNIFICANCE: These findings constitute the first demonstration based on genetic lineage-tracing of EMT in cultured adult primary human cells, and show that EMT does not induce multipotency in cells derived from human beta cells
    • …
    corecore