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Abstract

One of the di�culties of object recognition stems from the need to overcome the variability in object ap-
pearance caused by factors such as illumination and pose. The inuence of these factors can be countered by
learning to interpolate between stored views of the target object, taken under representative combinations
of viewing conditions. Di�culties of another kind arise in daily life situations that require categorization,
rather than recognition, of objects. We show that, although categorization cannot rely on interpolation
between stored examples, knowledge of several representative members, or prototypes, of each of the cat-
egories of interest can still provide the necessary computational substrate for the categorization of new
instances. The resulting representational scheme based on similarities to prototypes is computationally
viable, and is readily mapped onto the mechanisms of biological vision revealed by recent psychophysical
and physiological studies.
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1 Introduction

To be able to recognize objects, a visual system must
combine the capacity for internal representation and for
the storage of object traces with the ability to compare
these against the incoming visual stimuli, namely, images
of objects. The appearance of an object is determined
not only by its shape and surface properties, but also
by its disposition with respect to the observer and the
illumination sources, by the optical properties of the in-
tervening medium and the imaging system, and by the
presence and location of other objects in the scene (Ull-
man, 1996). Thus, to detect that two images belong,
in fact, to the same three-dimensional object, the visual
system must overcome the inuence of a number of fac-
tors that a�ect the way objects look.
The choice of approach to the separation of the intrin-

sic shape of an object from the extrinsic factors a�ecting
its appearance depends on the nature of the task faced
by the system. One of these tasks, which may be prop-
erly called recognition (knowing a previously seen object
as such), appears now to require little more than stor-
ing information concerning earlier encounters with the
object, as suggested by the success of view-based recog-
nition algorithms developed in computer vision in early
1990's (Poggio and Edelman, 1990; Ullman and Basri,
1991; Breuel, 1992; Tomasi and Kanade, 1992). In this
paper, we show that it is surprisingly easy to extend such
a memory-based strategy to deal with categorization, a
task that requires the system to make sense of novel
shapes. Thus, familiarity with a relatively small selec-
tion of objects can be used as a foundation for processing
(i.e., representing and categorizing) other objects, never
seen before.
The theory of representation on which the present ap-

proach is based calls for describing objects in terms of
their similarities to a relatively small number of refer-
ence shapes (Edelman, 1995b; Edelman, 1997b). The
theoretical underpinnings of this idea are discussed else-
where (Edelman and Duvdevani-Bar, 1997); here, we
demonstrate its viability on a variety of objects and ob-
ject classes, and discuss the implications of its successful
implementation for understanding object representation
and categorization in biological vision.

1.1 Visual recognition

If the appearance of visual objects were immutable and
una�ected by any extrinsic factors, recognition would
amount to simple comparison by template matching, a
technique in which two patterns are regarded as the same
if they can be brought into one to one correspondence.
As things stand, the e�ects of the extrinsic factors must
be mitigated to ensure that the comparison is valid. The-
ories of recognition, therefore, tend to have two parts:
one concentrating on the form of the internal represen-
tation into which images of objects are cast, and the
other on the details of the comparison process.
A model of recognition that is particularly well-suited

to the constraints imposed by a biological implementa-
tion has been described in (Poggio and Edelman, 1990).
This model relies on the observation that the views of a
rigid object undergoing transformation such as rotation

in depth reside in a smooth low-dimensional manifold
embedded in the space of coordinates of points attached
to the object (Ullman and Basri, 1991; Jacobs, 1996);
furthermore, the properties of smoothness and low di-
mensionality of this view space manifold are likely to be
preserved in whatever measurement space is used by the
front-end of the visual system. The operational conse-
quence of this observation is that a new view of an object
may be recognized by interpolation among its selected
stored views, which together represent the object. A cri-
terion that indicates the quality of the interpolation can
be formed by comparing the stimulus view to the stored
views, by passing the ensuing proximity values through a
Gaussian nonlinearity, and by computing a weighted sum
of the results (this amounts to a basis-function interpo-
lation of the view manifold, as described in section 3.1).
The outcome of this computation is an estimate of the
measurement-space distance between the point that en-
codes the stimulus and the view manifold. If a su�cient
number of views is available to de�ne that manifold, this
distance can be made arbitrarily independent of the pose
of the object, one of the extrinsic factors that a�ect the
appearance of object views. The inuence of the other
extrinsic factors (e.g., illumination) can be minimized in
a similar manner, by storing examples that span the ad-
ditional dimensions of the view manifold, corresponding
to the additional degrees of freedom of the process of
image formation.

In the recognition scenario, the tacit assumption is
that the stimulus image is either totally unfamiliar, or,
in fact, corresponds to one of the objects known to the
system. A sensible generic decision strategy under this
assumption is nearest-neighbor (Cover and Hart, 1967),
which assigns to the stimulus the label of the object that
matches it optimally (modulo the inuence of the extrin-
sic factors, and, possibly, measurement noise). In the
view-interpolation scheme, the decision can be based on
the value of the distance-to-the-manifold criterion that
reects the quality of the interpolation (a low value sig-
ni�es an unfamiliar object). As we argue next, this ap-
proach, being an instance of the generic nearest-neighbor
strategy, addresses only a small part of the problem of
visual object processing.

1.2 Visual categorization

Because it assumes that variability in object appearance
is mainly due to factors such as illumination and pose,
the standard approach to recognition calls for a com-
parison between the intrinsic shape of the viewed object
(separated from the inuence of the extrinsic factors)
and the stored representation of that shape. According
to this view, a good representation is one that makes ex-
plicit the intrinsic shape of an object in great detail and
with high �delity.

A reection on the nature of everyday recognition
tasks prompts one to question the validity of this view
of representation. In a normal categorization situation
(Rosch, 1978; Smith, 1990), human observers are ex-
pected to ignore much of the shape details (Price and
Humphreys, 1989). Barring special (albeit behaviorally
important) cases such as face recognition, entry-level
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Figure 1: The process of image formation. A family of shapes (say, 4-legged animal-like objects) can be de�ned
parametrically, using a small number of variables (Edelman and Duvdevani-Bar, 1997), illustrated symbolically on
the left by the three \sliders" that control the values of the shape variables. These, in turn, determine the geometry
of the object, e.g., the locations of the vertices of a triangular mesh that approximates the object's shape. Finally,
intrinsic and extrinsic factors (geometry and viewing conditions) together determine the appearance of the object.

(Jolicoeur et al., 1984) names of objects correspond to
categories rather to individuals, and it is the category
of the object that the visual system is required to de-
termine. Thus, the observer is confronted with potential
variation in the intrinsic shape of an object, because ob-
jects called by the same name do not, generally, have
exactly the same shape. This variability in the shape
(and not merely in the appearance) of objects must be
adequately represented, so that it can be treated prop-
erly at the categorization stage.

Di�erent gradations of shape variation call for di�er-
ent kinds of action on the part of the visual system. On
the one hand, moderately novel objects can be handled
by the same mechanism that processes familiar ones,
insofar as such objects constitute variations on famil-
iar themes. Speci�cally, the nearest-neighbor strategy
around which the generic recognition mechanism is built
can be allowed to handle shape variation that does not
create ambiguous situations in which two categories vie
for the ownership of the current stimulus. On the other
hand, if the stimulus image belongs to a radically novel
object | e.g., one that is nearly equidistant, in the
similarity space de�ned by the representational system,
to two or more familiar objects, or very distant from
any such object | a nearest-neighbor decision no longer
makes sense, and should be abandoned in favor of a bet-
ter procedure. Such a procedure, suitable for represent-
ing both familiar and novel shapes, is described in the
next section.

2 The shape space

To be able to treat familiar and novel shapes uniformly
within the same representational framework, it is use-
ful to describe shapes as points in a common param-
eter space. A common parameterization is especially
straightforward for shapes that are sampled at a pre-

set resolution, then de�ned by the coordinates of the
sample points (cf. Figure 1). For instance, a family of
shapes each of which is a \cloud" of k points spans a 3k-
dimensional shape space (Kendall, 1984); moving the k
points around in 3D (or, equivalently, moving around the
single point in the 3k-dimensional shape space) amounts
to changing one shape into another.

By de�ning similarity between shapes via a distance
function in the shape space, clusters of points are made
to correspond to classes of shapes (i.e., sets of shapes
whose members are more similar to each other than to
members of other sets). To categorize a (possibly novel)
shape, then, one must �rst �nd the corresponding point
in the shape space, then determine its location with re-
spect to the familiar shape clusters. Note that while a
novel shape may fall in between the clusters, it will in
any case possess a well-de�ned representation. This rep-
resentation may be then acted upon, e.g., by committing
it to memory, or by using it as a seed for establishing a
new cluster.

2.1 The high-dimensional measurement space

Obviously, a visual system has no direct access to what-
ever shape space in which the geometry of distal objects
may be de�ned (in fact, the notion of a unique geomet-
rical shape space does not even make sense: the same
physical object can be described quantitatively in many
di�erent ways). The useful and intuitive notion of a
space in which each point corresponds to some shape
can, however, be put to work by introducing an interme-
diary concept: measurement space.

A system that carries out a large number of measure-
ments on a visual stimulus e�ectively maps that stimulus
into a point in a high-dimensional space; the diversity
and the large number of independent measurements in-
crease the likelihood that any change in the geometry of
the distal objects ends up represented at least in some
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of the dimensions of the measurement space. Indeed, in
primate vision, the dimensionality of the space presented
by the eye to the brain is roughly one million { the same
as the number of �bers in each optic nerve.
Most of this high-dimensional space is empty: a ran-

domly chosen combination of pixel values in an image is
extremely unlikely to form a picture of a coherent ob-
ject. The locus of the measurement-space points that
do represent images of coherent objects depends on all
the factors that participate in image formation, both in-
trinsic (the shapes of objects) and extrinsic (e.g., their
pose), which together de�ne the proximal shape space.
Note that smoothly changing the shape of the imaged
object causes the corresponding point to ascribe a man-
ifold in the measurement space. The dimensionality of
this manifold depends on the number of degrees of free-
dom of the shape changes; for example, simple morphing
of one shape into another produces a one-dimensional
manifold (a curve). Likewise, rotating the object in
depth (a transformation with two degrees of freedom)
gives rise to a two-dimensional manifold which we call
the view space of the object. It turns out that the prox-
imal shape space, produced by the joint e�ects of de-
formation and transformation, can be safely considered
a locally smooth low-dimensional manifold embedded in
the measurement space (Edelman and Duvdevani-Bar,
1997).

2.2 Dimensionality reduction and the proximal
shape space

In the above formulation, the categorization problem
becomes equivalent to determining the location of the
measurement-space representation of the stimulus within
the proximal shape space. Our approach to this prob-
lem is inspired by the observation that the location of
a point can be precisely de�ned by specifying its dis-
tance to some prominent reference points, or landmarks

(Edelman and Duvdevani-Bar, 1997). Because distance
here is meant to capture di�erence in shape (i.e., the
amount of deformation), its estimation must exclude (1)
components of measurement-space distance that are or-
thogonal to the shape space, as well as (2) components of
shape transformation such as rotation. As we shall see,
a convenient computational mechanism for distance esti-
mation that satis�es these two requirements is a module
tuned to a particular shape, that is, designed to respond
selectively to that shape, irrespective of its transforma-
tion. A few such modules, tuned to di�erent reference
shapes, e�ectively reduce the dimensionality of the repre-
sentation from that of the measurement space to a small
number, equal to the number of modules (Figure 2). In
the next section, we describe a system for shape cate-
gorization based on a particular implementation of this
approach, which we call the Chorus of Prototypes (Edel-
man, 1995b); its relevance as a model of shape processing
in biological vision is discussed in section 5.

3 The implementation

A module tuned to a particular shape will ful�ll the �rst
of the two requirements stated above { ignoring the ir-
relevant components of the measurement-space distance

{ if it is trained to discriminate among objects all of
which belong to the desired shape space. Such a train-
ing imparts to the module the knowledge of the relevant
measurement-space directions, by making it concentrate
on the features that help discriminate between the ob-
jects. To ful�ll the second requirement { insensitivity to
shape transformations { the module must be trained to
respond equally to di�erent views of the object to which
it is tuned. A trainable computational mechanism capa-
ble of meeting these two requirements is a radial basis
function (RBF) interpolation module.

3.1 The RBF module

When stated in terms of an input-output relationship,
our goal is to build a module that would output a
nonzero constant for any view of a certain target ob-
ject, and zero for any view of all the other objects in the
training set. Because only a few target views are usually
available for training, the problem is to interpolate the
view space of the target object, given some examples of
its members. With basis function interpolation (Broom-
head and Lowe, 1988), this problem can be solved by
a distributed network, whose structure can be learned
from examples (Poggio and Girosi, 1990).

According to this method, the interpolating function
is constructed out of a superposition of basis functions,
whose shape reects the prior knowledge concerning the
change in the output as one moves away from the data
point. In the absence of evidence to the contrary, all di-
rections of movement are considered equivalent, making
it reasonable to assume that the basis function is radial
(that is, it depends only on the distance between the ac-
tual input and the original data point, which serves as its
center). The resulting scheme is known as radial basis
function (RBF) interpolation. Once the basis functions
have been placed, the output of the interpolation mod-
ule for any test point is computed by taking a weighted
sum of the values of all the basis functions at that point.

An application of RBF interpolation to object recogni-
tion has been described in (Poggio and Edelman, 1990);
the RBF model was subsequently used to replicate a
number of central characteristics of the process of recog-
nition in human vision (B�ultho� and Edelman, 1992).
In its simple version, one basis function is used for
(the measurement-space representation of) each famil-
iar view. The appropriate weight for each basis is then
computed by an algorithm that involves matrix inver-
sion (a closed-form solution exists for this case). This
completes the process of training the RBF network. To
determine whether a test view belongs to the object on
which the network has been trained, this view (that is, its
measurement-space representation) is compared to each
of the training views. This step yields a set of distances
between the test view and the training views that serve
as the centers of the basis functions. In the next step,
the values of the basis functions are combined linearly
to determine the output of the network (see Figure 3,
inset, and appendix A).
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Figure 2: A schematic illustration of the shape-space manifold de�ned by a Chorus of three active modules (lion,
penguin, frog). Each of the three reference-shape modules is trained to ignore the viewpoint-related factors (the
view space dimension, spanned by views that are shown explicitly for lion), and is thus made to respond to shape-
related di�erences between the stimulus (here, the giraffe) and its \preferred" shape. The actual dimensionality
of the space spanned by the outputs of the modules (Edelman and Intrator, 1997) can be lower than its nominal
dimensionality (equal to the number of modules); here the space is shown as a two-dimensional manifold.

3.2 Multi-classi�er network design

A multi-classi�er network is constructed by combining
several single-shape modules, each tuned to a di�erent
shape class. The multi-classi�er network is trained ac-
cording to the algorithm described in appendix C.1. The
response properties of such a network are illustrated in
Figure 16, which shows the activity of several RBF mod-
ules for a number of views of each of the objects on which
they had been trained. As expected, each module's re-
sponse is the strongest for views of its preferred shape,
and is weaker for views of the other shapes. Signi�cantly,
the response is rarely very weak; this feature contributes
to the distributed nature of the representation formed
by an ensemble of modules, by making several modules
active for most stimuli.1

It has been hypothesized (Edelman et al., 1996) that
the ensemble of responses produced by a collection of
object-speci�c modules can serve as a substrate for car-

1Note that much more information concerning the shape
of the stimulus is contained in the entire pattern of activi-
ties that it induces over the ensemble of the reference-object
modules, compared to the information in the identity of the
strongest-responding module (Edelman et al., 1992). Typical
object recognition systems in computer vision, which involve
a Winner Take All decision, opt for the latter, impoverished,
representation of the stimulus.

rying out classi�cation of the stimulus at superordinate,
basic, or subordinate levels of categorization (Rosch
et al., 1976; Rosch, 1978), depending on the manner in
which the response vector is processed. In the next sec-
tion we describe a series of computational experiments
that examine the representational capabilities of a multi-
classi�er network in a range of tasks.

4 Experimental results

In all our computational experiments we used three-
dimensional object geometry data available as a part of
a commercial database that contains several hundreds
of shapes. Ten reference objects were chosen at random
from the database, to serve as the prototypes for the
multi-classi�er network implementation of the Chorus
scheme (see Figure 5).

To focus on the problem of shape-based recognition,
objects were rendered under the Lambertian shading as-
sumption, using a simulated point light source situated
at the camera, a uniform gray surface color, and no tex-
ture. Each object was presented to the system sepa-
rately, on a white background, at the center of a 256�256
window; the maximal dimensions of the 3D bounding
boxes of the objects were normalized to a standard size
(about one half of the size of the window). Thus, the
problems of �gure-ground segmentation and of transla-
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Figure 3: The Chorus scheme (section 3). The stimulus is �rst projected into a high-dimensional measurement
space, spanned by a bank of receptive �elds. Second, it is represented by its similarities to reference shapes. In this
illustration, only three modules respond signi�cantly, spanning a shape space that is nominally three-dimensional (in
the vicinity of the measurement-space locus of gira�e images). The inset shows the structure of each module. Each of

a small number of training views, vt, serves as the center of a Gaussian basis function G (a;b;�) = exp
�
ka� bk2=�2

�
;

the response of the module to an input vector x is computed as y =
P

t wtG (x;vt). The weights wt and the spread
parameter � are learned as described in (Poggio and Girosi, 1990). It is important to realize that the above approach,
which amounts to an interpolation of the view space of the training object using the radial basis function (RBF)
method, is not the only one applicable to the present problem. Other approaches, such as interpolation using the
multilayer perceptron architecture, may be advantageous, e.g., when the measurement space is \crowded," as in face
discrimination (Edelman and Intrator, 1997).

tion and scale invariance were e�ectively excluded from
consideration.

The performance of the resulting 10-module Chorus
system was assessed in three di�erent tasks: (1) identi-
�cation of novel views of the ten objects on which the
system had been trained, (2) categorization of 43 novel
objects belonging to categories of which at least one ex-
emplar was available in the training set, and (3) discrim-

ination among 20 novel objects, chosen at random from
the database.

4.1 Identi�cation of novel views of familiar
objects

The ability of the system to generalize identi�cation to
novel views was tested on the ten reference objects, for
each of which we had trained a dedicated RBF module.
We experimented with three di�erent identi�cation algo-
rithms, whose performance was evaluated on a set of 169
views, taken around the canonical orientation speci�c for
each object (Palmer et al., 1981). The test views ranged
over �60� in azimuth and elevation, at 10� increments.

4.1.1 Identi�cation results

We �rst computed the performance of each of the ten
RBF modules using individually determined thresholds.
For each module, the threshold was set to the mean ac-
tivity on trained views2 less one standard deviation. The
performance of each of the ten modules on its training
object is summarized in Table 1. As one can see, the
residual error rates were about 10%, a �gure that can
probably be improved if a more powerful architecture or
a more extensive learning procedure are used. The gen-
eralization error rate (de�ned as the mean of the miss
and the false alarm rates, taken over all ten reference
objects) for the individual-threshold algorithm was 7%.

We next considered the Winner-Take-All (WTA) al-
gorithm, according to which the outcome of the identi-
�cation step is the label of the module that gives the
strongest response to the current stimulus (in Table 4,
appendix D, entries for modules that responded on the
average the strongest are marked by bold typeface). The
error rate of the WTA method was 10%.

2Only about a tenth of the 169 views, determined by
canonical vector quantization (see appendix B.1), had been
used in training the modules.
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Figure 4: An image of a 3D object, overlayed by the outlines of the receptive �elds (RFs) used to map object views
into a high-dimensional measurement space (see section 2.1 and appendix B). The system described here involved
200 radially elongated Gaussian RFs; only some of them are drawn in this �gure.

cow1 cat Al gene tuna Lrov Niss F16 fly TRex

miss rate 0.11 0.14 0.02 0.01 0.13 0.04 0.03 0.10 0.16 0.05
false alarm rate 0.08 0.11 0.07 0.02 0.11 0.05 0.04 0.12 0.12 0.03

Table 1: Individual shape-speci�c module performance. The table shows the miss and the false alarm rates of
modules trained on the objects shown in Figure 5. The generalization error rate (de�ned as the mean of the miss
and the false alarm rates) was 7%.

Finally, we trained a second-level RBF module to map
the 10-element vector of the outputs of the reference-
object modules into another 10-dimensional vector only
one of whose elements (corresponding to the actual iden-
tity of the input) was allowed to assume a nonzero value
of 1; the other elements were set to 0 (Edelman et al.,
1992). This approach takes advantage of the distributed
representation of the stimulus by postponing the Winner
Take All decision until after the second-level module has
taken into account the similarities of the stimulus to all

reference objects. Indeed, the WTA algorithm applied
to the second-level RBF output resulted in an error rate
of 6%.

4.1.2 Lessons from the identi�cation
experiments

The purpose of the �rst round of experiments was to
ensure that the system of reference-object modules could
be trained to identify novel views of those objects. The
satisfactory performance of the RBF modules, which did
generalize to novel views of the training objects, allowed
us to proceed to test the entire system in a number of
representation scenarios involving novel shapes, as de-
scribed below. We note that one cannot expect the per-
formance on novel objects to be better than that on the
familiar ones. Thus, the �gure obtained in the present
section | about 10% error rate | sets a bound on the

performance in the other tasks. To improve that, one
may attempt to employ an alternative learning mecha-
nism (as suggested above), in conjunction with a better
image transduction stage, instead of the 200 Gaussian
RFs we used here.

4.2 Categorization of novel object views

Our second experiment tested the ability of the Chorus
scheme to categorize \moderately" novel stimuli, each
of which belonged to one of the categories present in
the original training set of ten objects. To that end, we
used the 43 test objects shown in Figure 6. To visualize
the utility of representation by similarity to the train-
ing objects, we used multidimensional scaling (Shepard,
1980) to embed the 10-dimensional layout of points cor-
responding to various views of the test objects into a
two-dimensional space (Figure 7). An examination of the
resulting plot revealed two satisfying properties. First,
views of various objects clustered by object identity (and
not, for instance, by pose, as in patterns derived by
multidimensional scaling from distances measured in the
original pixel space). Second, in Figure 7 views of the
QUADRUPEDS, the AIRPLANES and the CARS categories all
form distinct \super-clusters."
To assess the quality of this representation numeri-

cally, we used it to support object categorization. A
number of categorization procedures were employed at
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cow1 cat2 flyAl general

DINOCARS AIR FISH

Figure 5: The ten training objects used as reference shapes in the computational experiments described in the text,
organized by object categories. The objects were chosen at random from a collection available from Viewpoint
Datalabs, Inc. (http://www.viewpoint.com/).

this stage. In every case, the performance of the 10-
dimensional Chorus-based representation was compared
to that of the original multidimensional receptive-�eld
(RF) measurement space (see Figure 4; we shall return
to discuss this comparison later on).
The various categorization procedures we used were

tested on the same set of 169 views per object as before.
First, we assigned a category label to each of the ten
training objects (for instance, cow and cat were both la-
beled as QUADRUPEDS). Second, we represented each test
view as a 10-element vector of RBF-module responses.
Third, we employed a categorization procedure to deter-
mine the category label of the test view. Each view that
was attributed to an incorrect category by the catego-
rization procedure was counted as an error.
The category labels we used are the same as the la-

bels given to the various groups of objects in Figure 5.
Note that a certain leeway exists in the assignment of
the labels. Normally, these are determined jointly by
a number of factors, of which shape similarity is but
one. For example, a fish and a jet aircraft are likely
to be judged as di�erent categories; nevertheless, if the
shape alone is to serve as the basis for the estimation of
their similarity, these categories may coalesce. We tested
this assumption in an independent psychophysical exper-
iment (Duvdevani-Bar, 1997), in which human subjects
were required to judge similarity among the same shapes
used in the present study, on the basis of shape cues only.
Similarity scores3 obtained in this experiments revealed
a clustering of object shapes in which the fly belonged
to the FIGURES category, and AIRcraft were interspersed
within the FISH category.
A careful examination of the confusion tables pro-

duced by the di�erent categorization methods we de-
scribe below revealed precisely these two phenomena as

3Score data were gathered using the tree construction
method (Fillenbaum and Rapoport, 1979), and were sub-
mitted to multidimensional scaling analysis (SAS procedure
MDS, 1989) to establish a spatial representation of the dif-
ferent shapes.

the major sources of miscategorization errors. First,
the fly classi�er turned out to be highly sensitive to
the members of the FIGURES category. Second, the
tuna module was in general more responsive to AIRcraft
than the F16 module (the sole representative of AIRcraft
among the reference objects). To quantify the e�ects
of this ambiguity in the de�nition of category labels on
performance, we compared three di�erent sets of labels
for the reference objects. The �rst set of category labels
is the one shown in Figure 5. The second set di�ers from
the �rst one in that it labels the fly as a FIGURE; in the
third set, the tuna and the F16 have the same category
label.

4.2.1 Winner-Take-All (WTA)

According to the WTA algorithm, the label of the
module that produces the strongest response to the novel
stimulus determines its category membership. We note
that the WTA method is incompatible with the central
tenet of the Chorus approach | that of distributed rep-
resentation. To be informative, a representation based
on similarities to reference objects requires that more
than one module respond to any given stimulus. A sys-
tem trained with this requirement in mind is expected
to thwart the WTA method by having di�erent modules
compete for a given stimulus, especially when the latter
does not quite �t into any of the familiar object cate-
gories. Indeed, in this experiment the WTA algorithm
yielded a high misclassi�cation rate of 45% over the 43
test objects for the �rst set of category labels. Adding
a second-stage RBF module trained as described in sec-
tion 4.1 reduced this �gure to 30%. When the second
and the third set of category labels were used, misclas-
si�cation rate decreased to 32%, and 25%, respectively.
Carrying out the WTA algorithm in the second-stage
RBF space reduced both those �gures to 23%.

4.2.2 k-NN using multiple views

We next examined another simple categorization
method, based on the k Nearest Neighbor (k-NN) prin-
ciple (Duda and Hart, 1973). The categorization module
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Figure 6: The 43 novel objects used to test the categorization ability of the model (see section 4.2); objects are
grouped by shape category.
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Figure 7: A 2D plot of the 10-dimensional shape space spanned by the outputs of the RBF modules; multidimensional
scaling (MDS) was used to render the 10D space in 2D, while preserving as much as possible distances in the original
space (Shepard, 1980). Each point corresponds to a test view of one of the objects; nine views of each of the ten
training and �ve novel objects (buffalo, penguin, marlin, Isuzu, F15, marked by �'s). Note that views belonging
to the same object tend to cluster (part of the residual spread of each cluster can be attributed to the constraint,
imposed by MDS, of �tting the two dimensions of the viewpoint variation and the dimensions of the shape variation
into the same 2D space of the plot). Note also that clusters corresponding to similar objects (e.g., the QUADRUPEDS)
are near each other. The icons of the objects appear near the corresponding view clusters; those of �ve novel objects
are drawn in cartouche.

9



was made to store N views of each reference object, each
represented as a point in the 10-dimensional space of
module outputs (10N views altogether were stored). The
category of a test view was then determined by polling
the k reference views that turned out to be the closest to
the test view in the 10D space. The label of the majority
of those k views was assigned to the test view.
The performance of this method for the third set of

category labels is summarized in Figure 8, which shows
the categorization rates for di�erent values of k and N ,
averaged over the 43 test objects. Note that the misclas-
si�cation error rate decreases with the number of views
considered, possibly because the relative amount of re-
liable information available in the neighborhood of the
test view increases. In contrast, the tendency to err in-
creases with k. The mean misclassi�cation rate for this
set of labels was 29% (41% and 31% for the �rst and sec-
ond cases, respectively). In comparison, when the 200-
dimensional measurement space was used to represent
the individual views, the mean error rate was 37%, 34%,
and 32% for the �rst, second and third sets of category
labels, respectively.

4.2.3 1-NN using centers of view clusters

A variation on the above method is to use clusters
of views of the reference objects, rather than individ-
ual views. If the clusters are tight, their centroids ap-
proximate them well. Accordingly, we used the cen-
troid of the set of training views of each object (cast
into the 10D space) as the representative member of
that object's cluster. Categorization followed the Near-
est Neighbor principle, which, in line with the notation
of the preceding section, may be called the 1-NN algo-
rithm. This procedure resulted in misclassi�cation rates
of 20%, 17%, and 15% for the three di�erent sets of cate-
gory labels. The 1-NN procedure showed a clear bene�t
of the 10-dimensional RBF-module representation over
the 200-dimensional measurement space, where the same
procedure yielded misclassi�cation rates of 30%, 25%,
and 23%, for the three sets of category labels.

4.2.4 k-NN to the training views

The previous method assumed that clusters are well-
represented by their means, which is not necessarily true
in practice. Likewise, the assumption that an unlimited
number of views of the training objects is available for
use in the scheme of section 4.2.2 is not always justi-
�ed. The use of all and only those views that were ac-
tually employed in the training of the 10 RBF modules
circumvents both these problems. Thus, the last catego-
rization method we tested involved the k-NN algorithm
along with the training views speci�c to each of the RBF
modules. At the �rst level of the RBF representation
space, this method yielded mean misclassi�cation rate
of 23%, 16% and 14% for the three sets of category la-
bels; average is taken over values of k ranging from 1
to 9. In the measurement space, the misclassi�cation
rates were slightly higher; on average over the same val-
ues of k, misclassi�cation rates for the three category
label sets were 23%, 22% and 20%. Tables 6 (in ap-
pendix D) and 2 give the detailed errors obtained for
the third set of category labels, for k = 3. Note how

the de�nition of category labels of the reference objects
a�ects the resulting misclassi�cation rate.

4.2.5 Lessons from the categorization
experiments

The pattern of the performance of the various algo-
rithms we tested in the categorization tasks conforms to
the expectations. Speci�cally, the RBF representation
was better than the \raw" 200-dimensional measurement
space. Although the latter outcome was not uniform (as
apparent in the nearly identical performance of the RBF
and the measurement spaces in some conditions), it was
quite consistent under conditions that we consider more
realistic (e.g., when view-cluster centers, or the actual
training views were used in the representation; see sec-
tions 4.2.3 and 4.2.4), and for the more appropriate def-
initions of the categorization task (i.e., for the second
and third sets of category labels).
Despite those encouraging results, the performance

of the system in the categorization experiments (about
80%) falls short by 10�15% of the human performance in
comparable circumstances. We list possible explanations
of this shortcoming in the general discussion section.

4.3 Discrimination among object views

Our third experiment tested the ability of the Chorus
scheme to represent 20 novel objects (shown in Figure 9),
picked at random from the database, and to support
their discrimination from one another. The tests in-
volved the same arrangement of 169 views per object
as before. The representation of the test objects is de-
scribed in Table 5, which shows the activation of the ten
reference-shape RBF modules produced by each of the
test objects.

4.3.1 Discrimination results

It is instructive to consider the patterns of similar-
ities revealed in this distributed 10-dimensional repre-
sentation of the test objects. For instance, the giraffe
turns out to be similar to the two quadrupeds present
in the training set (cow and cat), as well as to the di-
nosaur (TRex), for obvious reasons (it is also similar to
the tuna and to the fly, for reasons which are less ob-
vious, but immaterial: both these reference shapes are
similar to most test objects, which makes their contribu-
tion to the representation uninformative). Thus, in the
spirit of Figure 2, the giraffe can be represented by
the vector [1:87 1:93 1:72] of similarities to the three ref-
erence objects which turn out to be informative in this
discrimination context (cow, cat, TRex).
As in Figure 7, the model clustered views by object

identity, and grouped view clusters by similarity between
the corresponding objects. In a quantitative estimate of
this performance, we used the k-NN algorithm, as ex-
plained in section 4.2.2, with labels correspond to object
identity rather than to object category. The k-NN pro-
cedure that relied on proximities to the 169 views of each
of the reference objects yielded a mean error rate (aver-
aged over values of k ranging from 1 to 9) of 5% over
the 169 test views of the 20 novel objects. When only 25
views spanning the range of �20� around the canonical
orientation of each test object were considered, the mean

10



Category labeling QUAD FIGS FISH AIR CARS DINO

Set I 0.08 0.34 0.14 0.50 0.11 0.33
Set II 0.08 0.10 0.14 0.50 0.11 0.33
Set III 0.08 0.10 0.14 0.28 0.11 0.33

Table 2: The individual errors for each category of test objects (see Table 6 for details). Note how the error rates
decrease for the test objects of the FIGURES category in the second case, and for the test objects of the AIR category
in the third case.
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Figure 8: The performance of the k-NN procedure described in section 4.2.2 for the third set of category labels,
plotted vs. k and N . The plots show the misclassi�cation rate for the 43 test objects shown in Figure 6. Left:

errors using the measurement-space representation; the mean misclassi�cation error is 32%. Right: the same, for the
RBF-module representation space; the mean misclassi�cation error is 29%.

error rate dropped to 1:5%. This improvement may be
attributed in part to the exclusion of non-representative
views, e.g., the head-on view of the manatee, which is
easily confused with the top view of the lamp. In the
RF-representation case, same experiment yielded error
rate of 1% with respect to the 169 views, whereas no
error occurred when 25 views of all 20 objects were con-
sidered.

When the same procedure was carried out for the 43
test objects of Figure 6, error rate was on the average
higher, because these objects resemble each other more
closely. The mean error rate (averaged over values of
k ranging from 1 to 9) for the 169 test views of the 43
objects was 15% in the RBF space and 7% in the RF-
representation space.

4.3.2 Lessons from the discrimination
experiments

When objects are highly dissimilar from one another,
discrimination (which requires that the objects be rep-
resented with the least possible confusion) is relatively
easy. In that case, the measurement space representation
is e�ective enough. To see that, one may compare the
discrimination results obtained with the measurement-
space representation of the set of 20 highly distinct novel
objects of Figure 9 to the results obtained with the same
method on the measurement-space representation of the

43 objects (Figure 6) used before. The advantage of the
measurement-space representation over the RBF space
in some discrimination tasks stems from the higher di-
mensionality and hence higher informativeness of the for-
mer. This high dimensionality is, however, a liability
rather than an asset in generalization and other catego-
rization tasks, an observation that is supported by our
data.

To quantify the ability of the model to reduce the di-
mensionality of the measurement space, we estimated its
performance with a varying number of reference objects,
holding the size of the test set �xed. In addition, we
quanti�ed the extent of dimensionality reduction that
could be a�orded under the constraint of a speci�c pre-
set discrimination error. Figure 10, left, shows the dis-
crimination error rate obtained with the 3-NN method
described in section 4.2.2 (using 25 views per test ob-
ject), plotted against the number of reference and test
objects (see also Table 7 in appendix D). Figure 10,
right, shows the number of reference objects required to
perform the discrimination task (using the 3-NN method
on 25 views per test object) with an error rate less than
10%, for a varying number of test objects. To the extent
that it could be tested with the available data, the scal-
ing of the model's performance with the number of test
objects seems to be satisfactory.
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Figure 9: The 20 novel objects, picked at random from the object database, which we used to test the representational
abilities of the model (see section 4.3).

Method
Repr. Category WTA k-NN M 1-NN k-NN C
Space labeling 1st 2nd

Set I 45 30 41 20 23
RBF Set II 32 25 31 17 16

Set III 23 23 29 15 14
Set I 37 30 23

RF Set II 34 25 22
Set III 32 23 20

Table 3: A summary of misclassi�cation error rates exhibited by the various methods of section 4.2, for the three sets
of category labels, using both the 200-dimensional measurement space and the 10-dimensional RBF representation
space. The error rate improved with each categorization method we introduced. The Winner-Take-All (WTA) of
section 4.2.1 produced the highest error, which was reduced when a second-stage RBF module was added. The
k-NN method of section 4.2.2, using multiple views around the test view, produced similar error rates, which were
signi�cantly improved by using centers of view clusters (1-NN) (see section 4.2.3), or when the k-NN method involving
the training views was used (section 4.2.4). For the last three methods, the error obtained in the RF measurement
space was higher that the corresponding error obtained in the RBF space. Note that under all methods, the errors
improved when the second and the third sets of category labels were used.
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Figure 10: Left: the mean discrimination error rate plotted against the representation dimensionality (the number of
reference objects) and the size of the test set (the number of test objects). The means were computed over 10 random
choices of reference and test objects. See Table 7 in appendix D for performance �gures. Right: the dimensionality
of the representation (the number of reference objects) required to perform discrimination with an error rate of
10% or less, for a varying number of test objects. The data for this plot were obtained by repeating the task of
discriminating among the views of Nt test objects represented by the activities of Np reference objects 2500 times;
this corresponded to 10 independent choices of Nt test objects out of a set of 50 test objects (�ve values of Nt were
tested: 2,5,10,25,50), and to 10 random selections of Np = 1; 5; 10; 15; 20 out of the 20 available reference objects.

5 Discussion

5.1 Implications for theories of visual
representation

In computer vision, one may discern three main theoret-
ical approaches to object representation: pictorial rep-
resentations, structural descriptions, and feature spaces
(Ullman, 1989). According to the �rst approach, objects
are represented by the same kind of geometric informa-
tion one �nds in a picture: coordinates of primitive ele-
ments, which, in turn, may be as simple as intensity val-
ues of pixels in an image (Lowe, 1987; Ullman, 1989; Pog-
gio and Edelman, 1990; Ullman and Basri, 1991; Breuel,
1992; Tomasi and Kanade, 1992; Vetter et al., 1997).
Because of the e�ects of factors extrinsic to shape, this
mode of representation can be used for recognition only
if it is accompanied by a method for normalizing the ap-
pearance of objects (Ullman, 1989) or, more generally,
for separating the e�ects of pose from the e�ects of shape
(Ullman and Basri, 1991; Tomasi and Kanade, 1992).
It is not easy to adapt the pictorial approach to carry

out categorization rather than recognition. One rea-
son for that is the excessive amount of detail in pic-
tures: much of the information in a snapshot of an ob-
ject is unnecessary for categorization, as attested by the
ability of human observers to classify line drawings of
common shapes (Biederman and Ju, 1988; Price and
Humphreys, 1989). Although a metric over images that
would downplay within-category di�erences may be de-
�ned in some domains, such as classi�cation of stylized
\clip art" drawings (Ullman, 1996, p.173), attempts to
classify pictorially represented 3D objects (vehicles) met
with only a limited success (Shapira and Ullman, 1991).
We believe that extension of alignment-like ap-

proaches from recognition to categorization is problem-
atic for a deeper reason than mere excess of information
in images of objects. Note that both stages in the process
of recognition by alignment (normalization and compar-
ison; see Ullman, 1989) are geared towards pairing the
stimulus with a single stored representation (which may
be the average of several actual objects, as in Basri's
1996 algorithm). As we pointed out in the introduction,
this strategy, designed to culminate in a winner-take-
all decision, is inherently incompatible with the need to
represent radically novel objects.

The ability to deal with novel objects has been con-
sidered so far the prerogative of structural approaches to
representation (Marr and Nishihara, 1978; Biederman,
1987). The structural approach employs a small num-
ber of generic primitives (such as the thirty-odd geons
postulated by Biederman), along with spatial relation-
ships de�ned over sets of primitives, to represent a very
large variety of shapes. The classi�cation problem here is
addressed by assigning objects that have the same struc-
tural description to the same category.

In principle, even completely novel shapes can be
given a structural description, because the extraction of
primitives from images and the determination of spatial
relationships is supposed to proceed in a purely bottom-
up, or image-driven fashion. In practice, however, both
these steps proved so far impossible to automate. State
of the art recognition systems in computer vision tend
to ignore the challenge posed by the problems of catego-
rization and of representation of novel objects (Murase
and Nayar, 1995), or treat categorization as a kind of
imprecise recognition (Basri, 1996).

In contrast to all these approaches, the Chorus model
is designed to treat both familiar and novel objects
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equivalently, as points in a shape space spanned by sim-
ilarities to a handful of reference objects. According to
Ullman's (1989) taxonomy, this makes it an instance of
the feature-based approach, the features being similari-
ties to entire objects. The minimalistic implementation
of Chorus described in the preceding sections achieved
recognition and generalization performance comparable
to that of the state of the art computer vision systems
(Murase and Nayar, 1995; Mel, 1997; Schiele and Crow-
ley, 1996), despite relying only on shape cues where other
systems use shape and color or texture or both. Fur-
thermore, this performance was achieved with a low-
dimensional representation (ten nominal dimensions),
whereas the other systems typically employ about a hun-
dred dimensions; for a discussion of the importance of
low dimensionality in this context, see (Edelman and
Intrator, 1997). Finally, our model also exhibited sig-
ni�cant capabilities for shape-based categorization and
for useful representation of novel objects; it is reason-
able to assume that its performance in these tasks can
be improved, if more lessons from biological vision are
incorporated into the system.

5.2 Implications for understanding object
representation in primate vision

The architecture of Chorus reects our belief that a good
way to achieve progress in computer vision is to follow
examples set by biological vision. Each of the building
blocks of Chorus, as well as its general layout, can be
readily interpreted in terms of well-established proper-
ties of the functional architecture of the primate visual
system (Poggio, 1990; Poggio and Hurlbert, 1994). The
basic mechanism in the implementation of this scheme
is a receptive �eld | probably the most ubiquitous
functional abstraction of the physiologist's tuned unit,
widely used in theories of biological information process-
ing (Edelman, 1997a). The receptive �elds at the front
end of Chorus are intended to parallel those found in
the initial stages of the primate visual pathway.4 Fur-
thermore, an RBF module of the kind used in the sub-
sequent stage of Chorus can be seen also as a receptive
�eld, tuned both to a certain location in the visual �eld
(de�ned by the extent of the front-end receptive �elds)
and to a certain location in the shape space (correspond-
ing to the shape of the object on which the module has
been trained).
Functional counterparts both of individual compo-

nents (basis functions) of RBF modules and of entire
modules have been found in a recent electrophysiological
study of the inferotemporal (IT) cortex in awake mon-
keys (Logothetis et al., 1995). The former correspond to
cells tuned to particular views of objects familiar to the
animal; the latter | to cells that respond nearly equally
to a wide range of views of the same object. It is easy
to imagine how an ensemble of cells of the latter kind,

4Admittedly, the 200 elongated-Gaussian RFs used in our
present simulations are too crude to serve as a model even
of the primary visual cortex. A better preprocessing stage
(e.g., a simulation of the complex-cell system described in
(Edelman et al., 1997)) should be tested in conjunction with
the Chorus scheme.

each tuned to a di�erent reference object, can span an
internal shape space, after the manner suggested above.

While a direct test of this conjecture awaits experi-
mental con�rmation, indirect evidence suggests that a
mechanism not unlike the Chorus of Prototypes is de-
ployed in the IT cortex. This evidence is provided by the
work of K. Tanaka and his collaborators, who studied ob-
ject representation in the cortex of anaesthetized mon-
keys (Tanaka, 1992; Tanaka, 1996). These studies re-
vealed cells tuned to a variety of simple shapes, arranged
so that units responding to similar shapes were clustered
in columns running perpendicular to the cortical surface;
the set of stimuli that proved e�ective depended to some
extent on the monkey's prior visual experience. If fur-
ther experimentation reveals that a given object consis-
tently activates a certain possibly disconnected subset of
the columns, and if that pattern of activation smoothly
changes in response to a continuous change in the shape
or the orientation (Wang et al., 1996) of the stimulus,
the principle of representation of similarity that serves
as the basis of Chorus would be implicated also as the
principle behind shape representation in the cortex.

The results of several recent psychophysical studies
of object representation in primates support the above
conjecture. In each of a series of experiments, which
involved subjective judgment of shape similarity and de-
layed matching to sample, human subjects (Edelman,
1995a; Cutzu and Edelman, 1996) and monkeys (Sug-
ihara et al., 1997) have been confronted with several
classes of computer-rendered 3D animal-like shapes, ar-
ranged in a complex pattern in a common parameter
space (cf. Shepard & Cermak, 1973). In each experi-
ment, processing of the subject data by multidimensional
scaling (used to embed points corresponding to the stim-
uli into a 2D space for the purpose of visualization) in-
variably revealed the low-dimensional parametric struc-
ture of the set of stimuli. In other words, the proximal
shape space internalized by the subjects formed a faith-
ful replica of the distal shape space structure imposed on
the stimuli. Furthermore, this recovery was reproduced
by a Chorus-like model, trained on a subset of the stim-
uli and subsequently exposed to the same test images
shown to the subjects. As we argue elsewhere, these �nd-
ings may help understand the general issue of cognitive
representation, and, in particular, the manner in which
representation can conform, or be faithful, to its object
(Edelman and Duvdevani-Bar, 1997; Edelman, 1997b);
their full integration will require a coordinated e�ort in
the �elds of behavioral physiology, psychophysics, and
computational modeling.

5.3 Summary

We have described a computational model of shape-
based recognition and categorization, which encodes
stimuli by their similarities to a number of reference
shapes, themselves represented by specially trained ded-
icated modules. The performance of the model (see Ta-
ble 3) suggests that this principle may allow for e�cient
representation, and, in most cases, correct categoriza-
tion, of shapes never before encountered by the observer
| a goal which we consider of greater importance than
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mere recognition of previously seen objects, and which so
far has eluded the designers of computer vision systems.

The most severe limitations of the present model are
(1) the lack of tolerance to image-plane translation and
scaling of the stimulus, (2) the lack of a principled way
of dealing with occlusion and interference among neigh-
boring objects in a scene, and (3) the lack of explicit rep-
resentation of object structure (a shortcoming it shares
with many other feature-based schemes). Whereas it
may be possible to treat translation and scaling e�ec-
tively without abandoning the present approach (Vetter
et al., 1995; Riesenhuber and Poggio, 1998), its extension
to scenes and to the explicit representation of structure
must await future research.
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A Theoretical aspects of the design of a shape-tuned module

In this section, we study the theoretical underpinnings of the ability of an RBF module to overcome the variability
induced by pose changes. Speci�cally, we show that once an RBF module is trained on a collection of object views,
its response to views that di�er from its centers (the training examples) in a small displacement along the view space
spanned by the examples is always higher than its response to views that are orthogonal to or directed away from
this view space.

A.1 The in�nitesimal displacement case

Assume the view space of a speci�c object shape can be sampled, and consider the sketch given in Figure 11,
illustrating the following notation:

� x1 is a training view, xi | another, arbitrary, training view, i = 1; : : : ; k.

� �x | a unit vector, (�x)T�x = 1.

� t > 0, a parameter controlling the extent of the displacement in the direction of �x.

x1 xi−

∆X

t ∆X

O

x1

xi

Figure 11: An illustration of the basic notations used in the text; x1, xi are training views of a speci�c object
shape, i = 1; : : : ; k. t�x is a vector representing a displacement from the view space spanned by the training
vectors. The angle between t�x and x1�xi indicates the direction of displacement. When all such angles are sharp,
the displacement is away from the view space, whereas when there is at least one such angle that is obtuse, the
displacement is towards one of the xi's, and therefore towards the view space.

Assume further that we train a (Gaussian) RBF network on a set of pairs fxi; yig
k
i=1, for X = fxig

k
i=1, a set of that

object views, and a simple target y = fyi = 1gki=1. For an input vector x, the corresponding RBF (x) activity is
given by:

RBF (x) =

kX
i=1

ci G(kx� xik)

=

kX
i=1

ci e
�[(x�xi)T (x�xi)]

2
=�2 : (1)

Let A = (ai); B = (bj), de�ne G(A;B) to be a matrix whose entry (i; j) is the Gaussian e
�kai�bjk

2

�2 . Training in
its simplest form means solving the equation

y = G(x;X) � c;

for the value of c. The solution is:

c =G+(X;X) � y; (2)

where + denotes the (pseudo) inverse of G.
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Thus, equation (1) takes the form

RBF (x) = G(x;X) �G+(X;X) � y: (3)

Upon successful training, RBF (x1) = 1� �; � � 1. We now compute the change in RBF behavior resulting from
an in�nitesimal displacement from a training vector x1, in an arbitrary direction.

@RBF (x+ t�x)

@t
j x=x1
t>0; t!0

= (4)

@

@t

"
kX
i=1

ci e
�[(x1+t�x�xi)T (x1+t�x�xi)]

2
=�2

#
=

kX
i=1

ci e
�[(x1+t�x�xi)T (x1+t�x�xi)]

2
=�2
�

�
@
@t
f�[(x1 + t�x� xi)

T (x1 + t�x� xi)]
2
=�2g:

Denote

D
4
=

@

@t
[�(x1 + t�x� xi)

T (x1 + t�x� xi)]
2
=�2:

D = �
2

�2
(x1 + t�x� xi)

T (x1 + t�x� xi)�

�
@
@t
[(x1 + t�x� xi)

T (x1 + t�x� xi):

Since �x is a unit vector, and by the commutativity of the inner product, we consequently have,

(x1 + t�x� xi)
T (x1 + t�x� xi) =

(x1 � xi)
T (x1 � xi) + 2t(�x)T (x1 � xi);

and,

@

@t
[(x1 + t�x� xi)

T (x1 + t�x� xi)] = 2(�x)T (x1 � xi) + 2t:

Thus,

D = �
2

�2
[kx1 � xik+ 2t(�x)T (x1 � xi)][2(�x)

T (x1 � xi) + 2t: (5)

Consider the following two possible cases:

(A) 8i (�x)T (x1 � xi) � 0,

(B) 9i (�x)T (x1 � xi) < 0.

Note that case (B) means that the direction of change, determined by the vector �x is along the view space spanned
by the xi; i = 1; : : : k, whereas in case (A), the direction of the displacement is orthogonal or away from the view

space (see, again, Figure 11). Denote, di
4
= kx1 � xik, �i

4
= (�x)T (x1 � xi), and note that di � 0. With the new

notation, equation (5) becomes,

D = �
2

�2
(di + 2t�i)(2�i + 2t)

= �
4

�2
(di�i + dit+ 2t�i

2 + 2t2�i);

and when t goes to zero, this yields,

D�!
t!0
�

4

�2
di�i:

Consequently, in the limit for t! 0, from equation (5) we have,

@RBF (x+ t�x)

@t
j x=x1
t>0; t!0

�!
t!0

kX
i=1

ci e
�

di
2

�i
2
� (�

4

�2
di�i): (6)
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Denote this limit by L, L = � 4
�2

Pk

i=1cidi�i e
�

di
2

�i
2 .

For case (A), �i � 0; 8i; Therefore, if all ci > 0, we would have LA � 0; LA < LB , for LA; LB the values of
the limit L, for cases (A) and (B), respectively. This means that an in�nitesimal displacement along the view space
results in a smaller change of the corresponding RBF activity than the RBF change resulted from a displacement
that is orthogonal to, or away from the view space. This establishes the desired property of an RBF -based classi�er
| an approximate constant behavior for di�erent views of the target shape, with the response falling o� for views
of di�erent shapes | for the in�nitesimal view change case.

Claim A.1 ci > 0; 8i = 1; : : : ; k.

Proof:
From equation (2) we have ci =

P
j(G

+)ijyj , the sum of elements in the ith row of the matrix G+, where yj are

the targets, yj = 1; j = 1; : : : k, and G+ is the (pseudo) inverse of G whose elements are Gij = e
�d2ij=�

2

, for

dij
4
= kxi � xjk. Note that G = I +A, where I is a unit matrix5, and A is a matrix whose elements are � 1, under

a proper bound on � (see below). Thus, by Taylor expansion for the matrix G, we have,

G+ =
1

I +A
� I �A+O(A2):

To complete the proof, let � < (ln k)�1=2min i;j

i<j

dij , for k - the number of training vectors. Thus, for all i and j,

dij > �(ln k)1=2, d2ij > �2 ln k, and �
d2ij
�2

< � ln k = ln 1
k
: Taking the exponent of both terms, we obtain

e�
d2
ij

�2 < eln
1
k =

1

k
:

As a result, the sum of elements in any row of G+ consists of 1 (the element on the diagonal, contributed by the
unit matrix) minus k � 1 elements, each smaller than 1

k
. Thus, we �nally have,

8i = 1; : : : ; k;

ci = 1�

k�1X
j=1

e�
d2
ij

�2 yj > 1�

k�1X
j=1

1
k
= 1� k�1

k
> 0:

A.2 The �nite displacement case

We next extend the above proof to a �nite view displacement. As before, we consider a change in object appearance
due to (a) the extrinsic e�ect of pose, i.e. a change along view space direction (object rotation), and (b) an intrinsic
shape change, that is, a change orthogonal to, or away from the view space (shape deformation).
First, note that the two factors determining the two-dimensional appearance of an object, the shape and pose,
are orthogonal. To demonstrate this, we have simulated shape and pose variation for three-dimensional objects
consisting of a collection of points in 3D. For such a point-cloud object, shape deformation is simulated by a random
displacement of the cloud's points, whereas a change of pose simply means an arbitrary rotation of all points. The
two-dimensional appearance of the deformed, or rotated object is obtained by an orthographic projection, and the
displacement from the two-dimensional appearance of the original cloud is measured. The inner product between
the two vectors, representing the changes in appearance caused by rotation and deformation, is calculated to �nd the
cosine of the angle between the shape and pose displacements. Figure 12 shows the above calculation for di�erent
combinations of shape and pose variations, averaged over many independent runs. Indeed, for a signi�cant range of
variation, orthogonality is observed between the shape and pose factors that determine the appearance of an object.
Now, let x1 be, as before, an arbitrary training view of the object, and let �v, �p, be �nite displacements along,
and in perpendicular to view space, respectively.
Note that because Gaussians are factorizable, and because the view-space and the shape-space projections of an
object appearance are orthogonal to each other, we have

G(kx� tk) = e
�kx�tk2

�2 = e
�kxp�tpk2

�2 e
�kxv�tvk2

�2 : (7)

Consider now a displacement within an object view space. This change in the object's (two-dimensional) appearance
results from a (three-dimensional) rotation of the object away from some reference view. The upper bound on this
kind of change is therefore �nite. To see that, recall that both fxig

N
i=1 and x are di�erent two-dimensional views of

the same object, resulting from projection of the corresponding three-dimensional \views," Xi; i = 1 : : : ; k, and X ,

58i; dii = 0, thus, e�d
2
ii
=�2 = 1 are the diagonal elements.
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Figure 12: Orthogonality of shape and pose. The displacement in the two-dimensional appearance of a three-
dimensional 10-point cloud object due to variations in pose and shape is measured, assuming orthographic projection.
The plot shows the average value of the cosine of the angle between the shape and pose displacements, calculated for
20; 000 randomly chosen values of pose variation (an arbitrary rotation of the cloud's points), and shape deformation
(a random displacement of the cloud's points). Data were gathered into a small number of bins, sorted by the angle
of rotation (shown in radians along the pose axis), and by the amount of shape deformation, measured as the fraction
of the random displacement with respect to the total cloud distribution (shape axis).

respectively. That is, x = PX ; xi = PXi, where P is a 3D �! 2D projection. Any three-dimensional view can be
described by an object rotation Rn(!) away from some orientation, say Xc in the three-dimensional space.
Thus,

kx� xik =

kPX � PXik = kPRn1(!1)Xc �PRni(!i)Xck:

Under orthographic projection, the di�erence between projected vectors is the projection of their di�erence,and the
norm which can only be reduced by projection, is preserved by the rotation mapping (Kanatani, 1990). Thus,

kP [Rn1(!1)Xc �Rni(!i)Xc]k �

kRn1(!1)Xc �Rni(!i)Xck �

kRn1(!1)Xck+ kRni(!i)Xck =

kXck+ kXck = 2 kXck:

Thus, an upper bound on the extent of the view space displacement is easily established. We denote this bound by
D. Let x = x1 +�v. From the above, k�vk � D. By triangle inequality,

kx� xik = k(x1 +�v)� xik �

k(x1 +�v)� x1k+ kx1 � xik = k�vk+ kx1 � xik:

Hence,

�kx� xik
2
� �

�
k�vk2 + 2k�vk � kx1 � xik+ kx1 � xik

2
�
:

As a consequence, because all ci are positive (Claim A.1),

RBF (x) =

kX
i=1

ci e
�kx�xik2=�2 �

kX
i=1

ci e
�k�vk2=�2

� e�2k�vk�kx1�xik=�
2

� e�kx1�xik
2=�2 :
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Now, let � < 2 min
i;j

i<j

dij , for dij
4
= kxi � xjk.

Thus, kx1 � xik �
�
2
.

Because k�vk � D, and �2 k�vk � �2D, we have,

�2k�vkkx1 � xik

�2
� �

D

�
:

Finally,

RBF (x) �

kX
i=1

ci e
�kx1�xik2=�2 � e�

D2

�2 � e�
D
� ;

or,

RBF (x) � e�
D
�
(1 + D

�
)
� RBF (x1);

for

D � �; F
4
=

D

�
� 1;

and,

e�F (1+F ) � 0:

Now, for a �nite displacement in perpendicular to the view space, x = x1 + �p, we have by orthogonality (equa-
tion (7)),

RBF (x) =

kX
i=1

ci e
�k(x1+�p)�xik2=�2 =

kX
i=1

ci e
�kx1�xik2=�2 � e�k�pk

2=�2 = RBF (x1) � e
�k�pk2=�2 :

For an arbitrary amount of shape-space displacement, say, �p � 0, e�k�pk
2=�2 � 1 can become arbitrarily small,

since ��p2 � 0 =) e�k�pk
2
=�
2

� 1.
Hence we �nally have, for a shape displacement,

RBF (x) � e�k�pk
2=�2RBF (x1)� RBF (x1):

From the above arguments, we may conclude that (1) any displacement within the view space of the target object
results in an RBF activity that cannot be less than some positive, not too small, fraction of its activity on the training
examples, whereas (2) for a displacement in perpendicular to the view space, the correspondingRBF activity is always
below the activity obtained in training, with the activity decreasing for increasing shape di�erences.

B Training individual shape-speci�c modules

To train an RBF module one needs to place the basis functions optimally as to cover the input space (i.e., determine
the basis-function centers), calculate the output weights associated with each center, and tune the basis-function
width.

B.1 Finding the optimal placement for each basis function

Whereas the computation of the weight assigned to each basis function is a linear optimization problem, �nding
the optimal placement for each basis in the input space is much more di�cult (Poggio and Girosi, 1990). Here, we
consider a simpli�ed version of this problem, which assumes that a small optimal subset of examples to be used in
training is chosen out of a larger set of available data, consisting of views of the shape on which the module is trained.
Views are given by their measurement-space representations (here, we used a small collection of �lters with radially
elongated Gaussian receptive �elds, randomly positioned over the image (Weiss and Edelman, 1995); see Figure 4).
This approach leads naturally to the question of the de�nition of optimality. De�ning an optimal subset of views as
the subset that minimizes the nearest-neighbor classi�cation error amounts to performing vector quantization (VQ;
see appendix C) in the input space (Moody and Darken, 1989; Poggio and Girosi, 1989).
By de�nition, quantizing an input space results in a set of vectors that are the best representation of the entire
space. A quantization is said to be optimal if it minimizes an expected distortion. Simple measures of the latter,
such as squared Euclidean distance, while widely used in vector quantization applications (Gersho and Gray, 1992),
do not correlate well with the subjective notion of distance appropriate for the task of quantizing an object view
space. Speci�cally, Euclidean distances in a pixel space do not reect object identities if the illumination conditions
are allowed to vary (Adini et al., 1997). Likewise, in a Euclidean receptive-�eld (RF) space, images of similar objects
tend to cluster together by view, not by object shape, if objects may rotate (Duvdevani-Bar and Edelman, 1995;
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Figure 13: A set of 49 views of one of the �gure-like test objects (Al), taken at grid points along an imaginary viewing
sphere centered around the object. Views di�er in the azimuth and the elevation of the camera, both ranging between
�60� and 60� at 20� increments. We used the Canonical Vector Quantization (CVQ) procedure to select the most
representative views for the purpose of training the object representation system (section B.1; the selected views of
Al are marked by frames.

Lando and Edelman, 1995). This implies that Euclidean distance between RF representation of object views cannot
overcome the variability in object appearance caused by changes in viewing conditions, and that a di�erent measure
of quantization distortion is needed.
The measure we incorporated in the present model is canonical distortion, proposed by Baxter (1996). The notion of
canonical distortion is based on the observation that in any given classi�cation task, there exists a natural environment
of functions, or classi�ers, that allow for a faithful representation of distance in the input space. The property shared
by all such classi�ers is that their output varies little across instances of the same entity (class); ideally, the output of
a particular classi�er is close to one if the input is an instance of its target class, and is close to zero otherwise. Thus,
in the space of classi�er outputs instances of the same class are closer together, and instances of di�erent classes
farther apart, than in the input space. According to Baxter, the distortion measurement induced by the classi�er
space is the desired canonical distortion measure.6

Following Baxter's ideas, we sample the view space of an object at a �xed grid wrapped around the viewing sphere
centered at the object (see Figure 13), then canonically quantize the resulting set of object views. The representative
views, which are subsequently used to train the object-speci�c modules, are chosen in accordance with the following
three criteria. First, a classi�er (i.e., module) output should be approximately constant for di�erent views of its
selected object. Second, views of the same object should be tightly clustered in the classi�er output space. Third,
clusters corresponding to views of di�erent objects should be separated as widely as possible.
We have combined these three criteria in a modi�ed version of the Generalized Lloyd algorithm (GLA) for vector
quantization (Linde et al., 1980), known also as the k-means method (MacQueen, 1967). In contrast to the conven-
tional GLA, which carries out quantization in the input vector space, our algorithm concentrates on the classi�er
output space. Training an RBF network on the centers of clusters resulting from the optimal partition of the classi�er
output space addresses the �rst of the three requirements | an approximately constant output across views of an
object. The other two requirements are addressed by a simultaneous minimization of the ratio of between-objects to
within-object view scatter (a cluster compactness criterion; see Duda and Hart, 1973).

6Formally, for an environment of functions f 2 F , mapping a probability space (X;P; �X) into a space (Y; �), with

� : Y � Y ! R, a natural distortion measure on X, induced by the environment is �(x; y) =
R
F

�(f(x); f(y))dQ(f), for

x; y 2 X, and Q an environmental probability measure on F .
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Increasing the number of examples on which a classi�er is trained always improves both the RBF-module classi�er
performance and the view-space compactness criterion (see Figure 14). Our version of Baxter's Canonical Vector
Quantization (CVQ) relies on this observation by taking the so-called \greedy" algorithmic approach. The algorithm
is initialized with an empty set of views and adds new views iteratively. At each iteration, the new view is chosen
so as to minimize the compactness criterion, and the entire process follows the gradient of improvement in classi�er
performance (see appendix C.1, for details).
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Figure 14: The e�ect of training-set size on the performance of an RBF module trained under the compactness
criterion. Left: the recognition error obtained for the Nissan module, trained as a part of a network consisting of ten
object modules (see Figure 5 below). For each object, training involved a set of N = 49 views, taken as described
in Figure 13. The abscissa is the number t of the training vectors (examples). For t < 15 or so, the performance of
the module trained on the CVQ-derived code vectors (dashed line) is better than the error obtained with the same
number of randomly chosen training vectors (solid line). When t is large, the resulting error is low in any case. Right:
The compactness criterion (the ordinate), de�ned as the ratio of between-cluster to within-cluster scatter (Duda and
Hart, 1973), plotted against the size of the training set. Note that the values of the compactness criterion obtained
for the CVQ code vectors (dashed line) are signi�cantly better (lower) than the values obtained for a module trained
on the same number of randomly chosen vectors (solid line). In both plots, the error bars represent the standard
error of the mean, calculated over 25 independent random choices of the training vectors.

B.2 Tuning the basis-function width

A complete speci�cation of an RBF module consists of the choice of basis function centers, the output weights
associated with each center, and the spread constant, or the width, of the basis functions. The width parameter has
a direct inuence on the performance of an RBF classi�er (i.e., its ability to accept instances of the class on which it
is trained and to reject other input). Optimally, the width parameter should be set to a value that yields equal miss
and false-alarm error rates (see Figure 15). Following the rule of thumb according to which the width parameter
should be much larger than the minimum distance and much smaller than the maximum distance among the basis
centers, we employ a straightforward binary search to optimize its value.

C Vector quantization

Vector quantization (VQ) is a technique that has been originally developed for signal coding in communications and
signal processing. It is used in a variety of tasks, including speech and image compression, speech recognition and
signal processing (Gersho and Gray, 1992).
A vector quantizer Q is a mapping from a d-dimensional Euclidean space, S, into a �nite set C of code vectors,
Q : S ! C, C = (p1; p2; : : : ; pn); pi 2 S; i = 1; 2; : : : ; n. Associated with every n-point vector quantizer is a partition
of S into n regions, Ri = fx 2 S : Q(x) = pig.
Vector quantizer performance is measured by distortion d(x; x̂) | a cost associated with representing an input
vector x by a quantized vector x̂. The goal in designing an optimal vector quantization set is to minimize the
expected distortion. The most convenient and widely used measure of distortion is the squared Euclidean distance.

C.1 The generalized Lloyd (K-means) algorithm

The generalized Lloyd algorithm (GLA) for vector quantizer design (Linde et al., 1980) is known also as the k-
means method (MacQueen, 1967). According to the algorithm, an optimal vector quantizer is designed via iterative
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Figure 15: The e�ect of the basis function width (�) on the performance of an RBF module. Left: RBF-module
miss rate (dashed line), false-alarm rate (dotted line) and their mean (solid line), plotted against �. The values
of � shown on the abscissa range from half the minimal distance up to the maximal distance among RBF-module
\centers" (training views) in the input space.

codebook modi�cations to satisfy two conditions: nearest neighbor (NN) and centroid condition (CC). The former
is equivalent to constructing the Voronoi cell of each code vector, whereas the application of the latter is aimed to
adjust each code vector to be the center of gravity of its domination region. The means of the (k) initial clusters are
found, and each input point is examined to see if it is closer to the mean of another cluster than it is to the mean
of its current cluster. In that case, the point is transferred and the cluster means (centers) are recalculated. This
procedure is repeated until the chosen measure of distortion is su�ciently small.

C.2 The Lloyd algorithm modi�ed to perform canonical quantization

We next present our modi�cation of the GLA for the canonical vector quantization (CVQ) design.

1. Initialization: Set N = 2, an initial codebook size. Set EN = 1. Set CN to be an initial codebook of size N .
The codebook is randomly chosen from the input set.

2. Find an input vector for which the compactness is optimal, and add it to CN to create a codebook CN+1 of
size N + 1.

(a) Set iteration m = 1, Dm =1.

(b) Given the codebook CNm , perform the modi�ed Lloyd Iteration on the classi�er output space to generate
the improved codebook CNm+1.

(c) Compute the sum-of-squared-error Dm. If
Dm�Dm+1

Dm
< � for a suitable threshold �, halt. The improved

codebook CNm+1 is the set of input vectors, whose classi�er outputs are the closest to the codevectors
constituting the improved output codebook (see below).
Otherwise, set m m+ 1, go to Step (b).

3. Calculate the classi�er generalization error EN . If the criterion
EN�EN+1

EN
� � is satis�ed, �nish. Otherwise,

set N  N + 1, go to Step (2).

The modi�ed Lloyd Iteration:

1. Compute classi�er activity over the input set, denote this set by O. Denote the set of classi�er outputs on the
codebook CNm , the output codebook.

2. Partition the set O into clusters using the Nearest Neighbor Condition, for the output-codebook vectors being
the cluster centers.

3. Using the Centroid Condition, compute the centroids for the clusters just found, to obtain a new output
codebook.
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Figure 16: The activity of several RBF modules obtained for 100 test views (25 views for each of four objects). The
views, which vary along the abscissa, are grouped, so that the �rst 25 views belong to the �rst object (cow, solid line),
with the subsequent views, in groups of 25, belonging, respectively, to cat (dotted line), tuna (dashed line), and
TRex (dash-dotted line). Note that each classi�er responds strongly to views of its target object, and signi�cantly
less to views of other objects.

D Additional tables

cow1 cat Al gene tuna Lrov Niss F16 fly TRex

cow1 4.04 1.86 0.42 1.62 0.91 1.22 1.79 1.21 0.71 0.53
cat2 1.69 3.55 0.26 1.02 1.10 1.20 2.10 1.04 0.61 0.53
Al 0.08 0.06 1.63 0.46 0.03 0.12 0.06 0.09 0.19 0.06

gene 0.61 0.43 0.44 5.24 0.14 0.11 0.26 0.48 0.55 0.25
tuna 1.57 2.00 0.40 1.11 4.22 1.41 3.05 1.77 0.72 1.02
Lrov 0.57 0.56 0.17 0.20 0.23 3.36 1.38 0.36 0.16 0.11
Niss 0.67 0.86 0.06 0.34 0.82 0.97 3.24 0.88 0.21 0.25
F16 0.50 0.44 0.11 0.65 0.58 0.27 0.94 2.14 0.24 0.25
fly 1.03 1.08 0.88 2.30 0.60 0.70 0.95 0.84 3.71 0.99
TRex 0.28 0.34 0.09 0.60 0.32 0.14 0.44 0.36 0.29 3.67

Table 4: RBF module activities (averaged over all 169 test views) evoked by the trained objects. Each row shows
the average activation pattern induced by views of one of the objects over the ten reference-object RBF modules;
boldface indicates the largest entry (see section 4.1).
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cow1 cat2 Al Gene tuna Lrov Niss F16 fly TRex

frog 0.38 0.28 0.29 0.18 0.35 0.20 0.11 0.09 0.99 0.16
turtle 0.53 0.32 0.38 0.64 0.39 0.13 0.09 0.13 0.93 0.17
shoe 0.51 0.63 0.06 0.12 1.09 0.46 0.54 0.33 0.59 0.16
pump 1.33 1.44 0.01 0.17 2.37 0.32 1.02 0.40 0.83 0.19
Beetho 0.09 0.05 0.10 0.02 0.07 0.05 0.01 0.01 0.38 0.01
girl 2.66 1.78 0.13 3.27 2.55 0.20 0.73 1.07 2.03 0.86
lamp 0.72 0.48 0.71 0.70 0.41 0.36 0.09 0.09 1.53 0.09
manate 1.49 0.98 0.09 0.36 2.47 0.35 1.45 0.68 0.84 0.24
dolphi 1.14 0.98 0.04 0.34 2.20 0.23 0.68 0.51 0.72 0.13
Fiat 1.51 1.77 0.01 0.12 3.76 0.46 2.27 0.87 0.79 0.27
Toyota 2.16 2.13 0.10 0.25 2.50 2.00 2.29 0.69 0.83 0.30
tank 1.85 1.91 0.09 0.51 2.50 1.04 2.36 1.46 1.08 0.56
Stego 2.04 2.13 0.06 0.67 3.61 0.67 2.45 1.46 1.58 0.98
camel 2.20 1.34 0.04 0.77 1.75 0.30 0.65 0.54 1.02 0.23
giraff 1.87 1.93 0.03 0.54 3.24 0.19 1.04 1.21 1.63 1.72
Gchair 1.75 1.69 0.00 0.09 3.04 0.29 1.40 0.76 0.86 0.19
chair 2.64 2.65 0.02 0.44 4.05 0.82 2.39 1.06 1.78 0.51
shell 1.89 1.09 0.25 1.56 0.95 0.44 0.40 0.49 1.66 0.35
bunny 1.07 1.24 0.23 0.22 1.10 1.47 0.53 0.28 0.95 0.30
lion 0.55 0.59 0.09 0.13 0.54 0.61 0.20 0.09 0.60 0.13

Table 5: RBF activities (averaged over all 169 test views) for the 20 test objects shown in Figure 9. In each row
(corresponding to a di�erent test object), entries within 50% of the maximum for that row are marked by boldface.
These entries constitute a low-dimensional representation of the test object whose label appears at the head of the
row, in terms of similarities to some of the ten reference objects. For instance, the manatee (an aquatic mammal
known as the sea cow) turns out to be like (in decreasing order of similarity), a tuna, a cow, and, interestingly, but
perhaps not surprisingly, a Nissan wagon.
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obj cow1 cat2 Al gene tuna Lrov Niss F16 fly TRex

QUAD cow2 0.69 0.30 0.01
ox 0.93 0.04 0.02 0.02
calf 0.86 0.06 0.06 0.01 0.02
deer 0.34 0.62 0.03 0.01
Babe 0.88 0.05 0.04 0.03
PigMa 0.83 0.12 0.02 0.04
dog 0.33 0.64 0.01 0.01 0.01
goat 0.20 0.69 0.04 0.06 0.02
buff 0.72 0.17 0.03 0.01 0.03 0.05
rhino 0.69 0.15 0.01 0.02 0.11 0.01

FIGS pengu 0.30 0.11 0.28 0.01 0.01 0.29
ape 0.11 0.11 0.31 0.47
bear 0.08 0.07 0.75 0.01 0.10
cands 0.16 0.74 0.10
king 0.67 0.09 0.24
pawn 0.73 0.27
venus 0.86 0.01 0.13
lamp 0.04 0.64 0.04 0.28
lamp2 0.03 0.70 0.27
lamp3 0.70 0.14 0.17

FISH whale 0.08 0.11 0.80 0.01
whalK 0.04 0.04 0.91 0.01
shark 0.03 0.07 0.89 0.01
Marln 0.01 0.98 0.01
whalH 0.10 0.20 0.70

AIR F15 0.12 0.08 0.02 0.02 0.72 0.03
F18 0.09 0.07 0.06 0.01 0.78
Mig27 0.05 0.37 0.14 0.12 0.31
shutl 0.24 0.31 0.30 0.13 0.02
Ta4 0.11 0.17 0.10 0.02 0.55 0.05

CARS Isuzu 0.07 0.07 0.04 0.83
Mazda 0.04 0.07 0.01 0.88
Mrcds 0.04 0.04 0.92
Mitsb 0.04 0.07 0.01 0.89
NissQ 0.07 0.08 0.01 0.83 0.01
Subru 0.04 0.04 0.92
SuzuS 0.13 0.17 0.08 0.30 0.33
ToyoC 0.09 0.07 0.05 0.79
Beetl 0.03 0.09 0.87 0.01
truck 0.07 0.05 0.89

DINO Paras 0.01 0.05 0.01 0.93
Veloc 0.03 0.24 0.02 0.71
Allos 0.21 0.36 0.04 0.02 0.36

Table 6: Categorization results for the 43 test objects shown in Figure 6, for the k-NN method of section 4.2.4,
with k = 3. Each row corresponds to one of the test objects; the proportion of the 169 test views of that object
attributed to each of the categories present in the training set appears in the appropriate column. Note that the
misclassi�cation rate depends on the de�nition of category labels. Here, mean misclassi�cation rate, over all 169
views of all objects, was 22% for the �rst set of category labels (i.e., the seven categories illustrated in Figure 5),
16% for the second set of labels (according to which the fly and the FIGURES have the same label), and 14% for the
third set of labels (where in addition the tuna and the F16 have the same category label).
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] Reference Objs
] Test Objs 1 5 10 15 20

2 0 0 0 0 0
5 0.077 0.011 0.006 0.008 0.006
10 0.140 0.024 0.009 0.008 0.007
25 0.183 0.026 0.009 0.005 0.005
50 0.055 0.022 0.012 0.008 0.007

Table 7: Error rate obtained for the discrimination task vs. the number of test and reference objects (these data are
also plotted in Figure 10). The error rate in entry (Np;Nt) is the mean error rate obtained for the discrimination task
using the activities of Np reference objects, and tested on 25 views of each of the Nt test objects, employing the 3-NN
procedure of section 4.2.2. The mean is taken over 10 independent choices of Np objects out of 20 available reference
objects, and 10 random selections of Nt objects out of a set consisting of 50 test objects (total of (5 �10)(5 �10) = 2500
independent trials).
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