900 research outputs found

    Get3DHuman: Lifting StyleGAN-Human into a 3D Generative Model using Pixel-aligned Reconstruction Priors

    Full text link
    Fast generation of high-quality 3D digital humans is important to a vast number of applications ranging from entertainment to professional concerns. Recent advances in differentiable rendering have enabled the training of 3D generative models without requiring 3D ground truths. However, the quality of the generated 3D humans still has much room to improve in terms of both fidelity and diversity. In this paper, we present Get3DHuman, a novel 3D human framework that can significantly boost the realism and diversity of the generated outcomes by only using a limited budget of 3D ground-truth data. Our key observation is that the 3D generator can profit from human-related priors learned through 2D human generators and 3D reconstructors. Specifically, we bridge the latent space of Get3DHuman with that of StyleGAN-Human via a specially-designed prior network, where the input latent code is mapped to the shape and texture feature volumes spanned by the pixel-aligned 3D reconstructor. The outcomes of the prior network are then leveraged as the supervisory signals for the main generator network. To ensure effective training, we further propose three tailored losses applied to the generated feature volumes and the intermediate feature maps. Extensive experiments demonstrate that Get3DHuman greatly outperforms the other state-of-the-art approaches and can support a wide range of applications including shape interpolation, shape re-texturing, and single-view reconstruction through latent inversion

    AC-NP: A Novel Chimeric Peptide with Natriuretic and Vasorelaxing Actions

    Get PDF
    The aim of this study was to evaluate the cardiovascular and renal activities of a newly designed natriuretic peptide (NP). Here, we engineered a novel 28-amino acid chimeric peptide, termed AC-NP that combined the 17-amino acid ring of C type natriuretic peptide (CNP) with the 6-amino acid N-terminus and 5-amino acid C-terminus of atrial natriuretic peptide (ANP). Both in vitro and in vivo experiments were performed to determine the actions of AC-NP. In normal rats, AC-NP proved to be more potentially diuretic, natriuretic and hypotensive compared with other NPs, such as ANP, CNP and vasonatrin peptide (VNP), which is another man-made NP. In relaxation of isolated abdominal aorta from rat, AC-NP was equally effective to ANP, CNP and VNP. Elevated levels of 3′,5′-guanosine monophosphate (cGMP) in plasma and urine cGMP excretion indicated the participation of cGMP in the functions of AC-NP. Taken together, innovative designed AD-NP might be a new candidate therapeutic peptide against cardiorenal disorders

    Stretchable organic optoelectronic sensorimotor synapse

    Get PDF
    Emulation of human sensory and motor functions becomes a core technology in bioinspired electronics for next-generation electronic prosthetics and neurologically inspired robotics. An electronic synapse functionalized with an artificial sensory receptor and an artificial motor unit can be a fundamental element of bioinspired soft electronics. Here, we report an organic optoelectronic sensorimotor synapse that uses an organic optoelectronic synapse and a neuromuscular system based on a stretchable organic nanowire synaptic transistor (s-ONWST). The voltage pulses of a self-powered photodetector triggered by optical signals drive the s-ONWST, and resultant informative synaptic outputs are used not only for optical wireless communication of human-machine interfaces but also for light-interactive actuation of an artificial muscle actuator in the same way that a biological muscle fiber contracts. Our organic optoelectronic sensorimotor synapse suggests a promising strategy toward developing bioinspired soft electronics, neurologically inspired robotics, and electronic prostheses.

    Stretchable Self-Healable Semiconducting Polymer Film for Active-Matrix Strain-Sensing Array

    Get PDF
    Skin-like sensory devidces shoud be stretchable and self-healable to meet the demands for future electronic skin applications. Despite recent notable advances in skin-inspired electronic materials, it remains challenging to confer these desired functionalities to an active semiconductor. Here, we report a strain-sensitive, stretchable, and autonomously self-healable semiconducting film achieved through blending of a polymer semiconductor and a self-healable elastomer, both of which are dynamically cross-linked by metal coordination. We observed that by controlling the percolation threshold of the polymer semiconductor, the blend film became strain sensitive, with a gauge factor of 5.75 x 105 at 100% strain in a stretchable transistor. The blend film is also highly stretchable (fracture strain, \u3e1300%) and autonomously self-healable at room temperature. We proceed to demonstrate a fully integrated 5 x 5 stretchable active-matrix transistor sensor array capable of detecting strain distribution through surface deformation

    The feasibility of using remote magnetic navigation system as the primary technological training tool for novice cardiac electrophysiology operators in the catheter ablation of left-sided accessory pathway

    Get PDF
    Background: For novice operators, mastering catheter ablation of left-sided accessory pathway (LSAP) in a short duration of time without compromising efficacy and safety remains a challenge. In this study an attempt to shorten the learning curve by using robotics via a remote magnetic navigation (RMN) system was performed. Methods: Novice physician fellows without prior catheter ablation experience initiated their process of learning LSAP ablation using the Niobe™ RMN system. Their procedure parameters were recorded and compared with experienced operators using RMN and manual catheter navigation (MCN). Results: Novice operators quickly shortened the total procedure time after their first five procedures. In subsequent procedures, no significant difference in procedure time, fluoroscopy exposure or ablation time was observed between novice and experienced RMN operators. When compared to MCN operators, novice operators avoided excessive radiation exposure beginning with their first RMN procedure, while lower fluoroscopy doses were noted after five procedures. It was observed that procedure parameters did not differ significantly according to LSAP location. Conclusion: The RMN system is a practical and easy to use tool for novice electrophysiology operators to quickly master LSAP ablation, without compromising efficacy or safety. Additionally, when compared to MCN it also protects the operators and patients from excessive radiation exposure during the procedure

    Disordered structure for long-range charge density wave order in annealed crystals of magnetic kagome FeGe

    Full text link
    Recently, charge density wave (CDW) has been observed well below the order of antiferromagnetism (AFM) in kagome FeGe in which magnetism and CDW are intertwined to form an emergent quantum ground state. The mechanism of CDW precipitating from an A-type AFM of Fe kagome sublattice is intensively debated. The structural distortion originating from the CDW has yet to be accurately determined in FeGe. Here we resolved the structure model of the CDW in annealed FeGe crystals through single crystal x-ray diffraction via a synchrotron radiation source. The annealed crystals exhibit strong CDW transition signals exemplified by sharp magnetic susceptibility drop and specific heat jump, as well as intense superlattice reflections from 2 ×\times 2 ×\times 2 CDW order. Occupational disorder of Ge atoms resulting from short-range CDW correlations above TCDWT_\mathrm{CDW} has also been identified from the structure refinements. The dimerization of Ge atoms along c axis has been demonstrated to be the dominant distortion for CDW. The Fe kagome and Ge honeycomb sublattices only undergo subtle distortions. Occupational disorder of Ge atoms is also proved to exist in the CDW phase due to the random selection of partial Ge sites to be dimerized to realize the structural distortion. Our work paves the way to understanding the unconventional nature of CDW in FeGe not only by solving the structural distortion below TCDWT_\mathrm{CDW} and identifying fluctuations above it but also by rationalizing the synthesis of high-quality crystals for in-depth investigations in the future.Comment: 18 pages, 4 figures. Comments are welcom
    corecore