43 research outputs found

    Micro-Macro Modeling of Polymeric Fluids and Shear-Induced Microscopic Behaviors

    Full text link
    This article delves into the micro-macro modeling of polymeric fluids, considering various microscopic potential energies, including the classical Hookean potential, as well as newly proposed modified Morse and Elastic-plastic potentials. These proposed potentials encompass microscopic-scale bond-breaking processes. The development of a thermodynamically consistent micro-macro model is revisited, employing the energy variational method. To validate the model's predictions, we conduct numerical simulations utilizing a deterministic particle-FEM method. Our numerical findings shed light on the distinct behaviors exhibited by polymer chains at the micro-scale in comparison to the macro-scale velocity and induced shear stresses of fluids under shear flow. Notably, we observe that polymer elongation, rotation, and bond breaking contribute to the zero polymer-induced stress in the micro-macro model when employing Morse and Elastic-plastic potentials. Furthermore, at high shear rates, polymer rotation is found to induce shear-thinning behavior in the model employing the classical Hookean potential

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population.

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (P interaction  = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Second order stabilized semi-implicit scheme for the Cahn-Hilliard model with dynamic boundary conditions

    Full text link
    We study the numerical algorithm and error analysis for the Cahn-Hilliard equation with dynamic boundary conditions. A second-order in time, linear and energy stable scheme is proposed, which is an extension of the first-order stabilized approach. The corresponding energy stability and convergence analysis of the scheme are derived theoretically. Some numerical experiments are performed to verify the effectiveness and accuracy of the second-order numerical scheme, including numerical simulations under various initial conditions and energy potential functions, and comparisons with the literature works

    On a deterministic particle-FEM discretization to micro-macro models of dilute polymeric fluids

    Full text link
    In this paper, we propose a deterministic particle-FEM discretization to micro-macro models of dilute polymeric fluids, which combines a finite element discretization to the macroscopic fluid dynamic equation with a variational particle scheme to the microscopic Fokker-Planck equation. The discretization is constructed by a discrete energetic variational approach, and preserves the microscopic variational structure in the semi-discrete level. Numerical examples demonstrate the accuracy and robustness of the proposed numerical scheme for some special external flows with a wide range of flow rates

    Model for the phase separation of poly(N-isopropylacrylamide)–clay nanocomposite hydrogel based on energy-density functional

    No full text
    The time-dependent Ginzburg-Landau (TDGL) mesoscopic method is utilized to simulate the phase separation of the poly(N-isopropylacrylamide)–clay nanocomposite hydrogel in the three-dimensional case, where the Cahn-Hilliard-Cook equation with a proposed free energy, which consists of the stretching and mixing energy based on Flory's mean theory, is considered. The main features of the presently proposed model include the following: (i) the proposed free energy consists of both the stretching and mixing energy; (ii) the processes of polymer chains detaching from and reattaching on crosslinks are considered in the proposed free energy; (iii) polymer chains have inhomogeneous chain lengths, which are divided into different types. A stabilized semi-implicit difference scheme is used to numerically solve the corresponding Cahn-Hilliard-Cook equation. Numerical results show the process of the phase separation and are consistent with morphology of the nanocomposite hydrogel.Published versio
    corecore