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Abstract 211 
 212 
Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a 213 

small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide 214 

association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 215 

54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 216 

at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies 217 

using a Taiwanese lung expression quantitative trait loci dataset (n=115) identified novel candidate 218 

genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian 219 

and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12.  At the same time, 220 

most of our findings in East Asian populations showed no evidence of association in European 221 

populations.  In our studies drawn from East Asian populations, a polygenic risk score based on the 25 222 

loci had a stronger association in never-smokers vs. individuals with a history of smoking 223 

(Pinteraction=0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in 224 

individuals of East Asian ancestry, which could be important in developing translational applications.  225 

 226 

 227 

  228 
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Introduction 229 

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and accounts for 230 

approximately 40% of lung cancer incidence worldwide1, 2, 3. In studies drawn from East Asian (EA) 231 

ancestry,  LUAD has been the predominant histologic subtype among females2 and has replaced 232 

squamous cell carcinoma as the most common subtype in males4,5. Well established risk factors, 233 

namely, tobacco smoking, certain environmental/occupational exposures and lifestyle factors, and 234 

family history, contribute to the risk of LUAD6, 7, 8. In addition, multiple genome-wide association 235 

studies (GWAS) have identified at least 24 susceptibility loci for LUAD that achieved genome-wide 236 

significance, many drawn from studies in EA9, 10, 11, 12, 13, 14, 15 and European (EUR)16, 17, 18, 19, 20, 21, 22, 23 237 

populations, as well as multi-ancestry meta-analyses24, 25. Of these, 12 loci have been reported at 238 

genome-wide significance in GWAS of either never-smokers9, 11, 12, 13 or smokers and nonsmokers 239 

combined10, 14, 15, 24 in EA populations while another two loci were suggested in a multi-ancestry meta-240 

analysis24.  We estimated that the known susceptibility variants account for only 13% of the estimated 241 

familial risk in EA populations. Accordingly, larger studies are needed to investigate the underlying 242 

architecture of susceptibility to LUAD in never-smokers and individuals with a history of smoking and 243 

in different ancestral populations. The importance of multi-ancestry analyses is further highlighted by 244 

reports of susceptibility loci showing association for LUAD in EA but not in EUR populations13.  245 
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In the current study, we conducted a two-stage GWAS meta-analysis in EA populations using 246 

unpublished and previously published data from four studies: the Female Lung Cancer Consortium in 247 

Asia (FLCCA), Nanjing Lung Cancer Study (NJLCS) 10, 24, National Cancer Center Research Institute 248 

(NCC) and Aichi Cancer Center (ACC), with 11,753 cases and 30,562 controls in the discovery set and 249 

9,905 cases and 120,114 controls in the replication set.  A multi-ancestry meta-analysis of EA and 250 

EUR studies16, 22 (from the International Lung Cancer Consortium, ILCCO) was performed to identify 251 

variants shared by both populations. We also investigated the heterogeneity of effect sizes for 252 

susceptibility variants identified in EA and EUR populations16, 22 and obtained genome-wide estimates 253 

of effect-size correlation. Finally, we evaluated the genetic architecture26 of LUAD, characterized by 254 

the number of susceptibility variants and their effect size distribution after normalizing allele 255 

frequencies, to investigate the accuracy of genetic risk prediction in the future GWAS in EA 256 

populations with increased sample sizes.  257 

 258 
Results 259 

Two-stage GWAS meta-analysis of LUAD in East Asian populations 260 

For the discovery set, we performed a fixed-effect meta-analysis (11,753 cases and 30,562 controls) 261 

drawn from EA studies (Table 1, Supplementary Table 1). Details of quality control, imputation and 262 

post-imputation filtering are described in Methods. Variants with an imputation quality score ≥0.5 and 263 

minor allele frequency (MAF) ≥0.01 were included for meta-analysis. The estimated genetic 264 

correlation between LUAD in never-smokers and individuals with a history of smoking was rg = 0.81 265 

(s.e. = 0.16) using linkage disequilibrium (LD) score regression (LDSC)27, which enabled the primary 266 

meta-analysis to include the two groups. LDSC analysis suggested little evidence of residual 267 

population stratification (LDSC intercept = 1.03). We identified 14 loci achieving genome-wide 268 

significance P < 5×10-8 (Supplementary Table 2); two were novel at 2p23.3 (rs682888, OR = 0.89, P = 269 
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4.94´10-10) and at 7q31.33 (rs4268071, OR = 1.39, P = 7.27´10-10). In meta-analysis performed 270 

separately for males and females, and for never-smokers and individuals with a history of smoking, no 271 

further loci achieved genome-wide significance.  272 

In the replication phase, we selected 37 lead variants with P < 10-5 in the discovery data that were not 273 

previously reported as genome-wide significant in either EA or EUR populations and genotyped them 274 

in an independent data set of 9,905 LUAD cases and 120,114 controls from a Japanese population 275 

(Table 1, Supplementary Table 1). After combining the discovery and the replication data, we 276 

identified a total of 10 novel loci achieving genome-wide significance and a novel variant on the locus 277 

at 15q21.2 that was previously reported in EUR populations16 (Table 2, Manhattan plot in Fig. 1, and 278 

regional association plots in Supplementary Fig. 1).  279 

Conditional analysis using GWAS summary statistics suggested two additional susceptibility variants 280 

rs13167280 (OR = 1.29, P = 4.07×10-13) and rs62332591 (OR = 0.87, P = 3.21×10-8) in the locus at 281 

5p15.33 (Table 3, Supplementary Fig. 2); both are in modest LD with previously reported secondary 282 

variants in EA populations28 (R2=0.27 between rs13167280 and rs1005420328; R2=0.19 between 283 

rs62332591 and rs1005420328). Another variant, rs12664490 (OR = 0.81, P = 1.24×10-10), was 284 

conditionally significant in a locus previously reported in EA at 6p21.1 (Table 3, Supplementary Fig. 285 

3), adding another novel variant (12 novel variants in total).  286 

A previous multi-ancestry meta-analysis conducted by Dai et al.24 that included Chinese samples and 287 

EUR samples from the ILCCO study identified three SNPs for LUAD, one of which achieved genome-288 

wide significance and the other two were suggestive in their analysis restricted to the Chinese 289 

subgroup24 (see Supplementary Table 3). In the meta-analysis of the Chinese samples in Dai et al.24 290 
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with our independent EA samples, all three variants exceeded the threshold of genome-wide 291 

significance without issues of heterogeneity (Supplementary Table 3).   292 

Overall, our study identified 12 novel susceptibility variants bringing the total to 28 genetic variants at 293 

25 loci that have been identified to date in EA populations (Supplementary Table 4, Fig. 1).  Assuming 294 

a familial risk estimate of 1.84 for first-degree relatives29, the 25 independent susceptibility variants for 295 

LUAD (Supplementary Table 4) captured 16.2% of the familial relative risk in EA populations. 296 

Moreover, we found no evidence that the SNP associations differed between the samples from the 297 

Mainland of China and those from outside of the Mainland of China, or between Han Chinese and 298 

Japanese, the two largest ancestry populations in our study (Supplementary Table 5).    299 

We further examined whether the novel variants identified in this study were associated with smoking 300 

behaviors (i.e., smoking status, cigarettes per day, initiation age and cessation) or chronic obstructive 301 

pulmonary disease in the Biobank Japan Project30 (BBJ). We found no evidence that these variants 302 

were implicated in these traits in this cohort (Supplementary Table 6). A previous GWAS in EUR 303 

populations found variants (e.g., rs55781567) at the 15q25.1 CHRNA5 locus associated with tobacco 304 

smoking and lung cancer risk only in  individuals with a history of smoking (OR=1.33, P= 1.83×10-78, 305 

MAF=0.39)16, 19, 31, 32. However, this variant did not achieve genome-wide significance in our EA data 306 

(OR=1.37, P=0.001 for individuals with a history of smoking; OR=1.05, P=0.44 for never-smokers), 307 

likely because of a low MAF=0.03, and no other variant in LD with this SNP showed a substantial 308 

association.  309 

Fine mapping and functional analyses of GWAS loci  310 

To prioritize candidate variants for functional follow-up from each of the LUAD GWAS loci, we 311 

performed Bayesian fine mapping using FINEMAP33 (Methods). Fine mapping of the genome-wide 312 
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significant loci from the discovery set nominated 95% credible set variants for 9 loci with a median of 313 

63 variants per locus (Supplementary Data 1). For the 12 novel variants identified from the combined 314 

discovery and replication datasets as well as conditional analysis, we then performed variant 315 

annotation analysis. High-LD variants for these signals (R2 ≥ 0.8 with the lead SNP in the 1000 316 

Genomes, phase 3, EA) included those located in predicted promoters or enhancers in lung tissues/cells 317 

(RegulomeDB34, Haploreg35 v4.1, and FORGE236; Supplementary Data 2), which can be tested in 318 

future experimental studies. 319 

To further characterize the functionality of the prioritized susceptibility genes that could explain the 320 

new GWAS loci, eQTL colocalization and transcriptome-wide association study (TWAS) analyses 321 

were conducted. Initial stratified LD score regression37 using GTEx data (Supplementary Fig. 4; 322 

Supplementary Data 3) indicated that LUAD heritability drawn from EA populations are enriched in 323 

lung tissue-specific genes and chromatin features compared to other tissues (aggregated rank test P = 324 

1.36×10-2 and 7.7×10-3, respectively; Supplementary Data 3). Accordingly, we performed eQTL 325 

analyses using the Taiwanese dataset of adjacent normal lung tissues from 115 never-smoking lung 326 

cancer patients (LCTCNS) (Methods; Supplementary data 4). We performed colocalization analyses of 327 

eQTL genes using eCAVIAR38 and HyPrColoc39. A notable finding was the colocalization of FADS1 328 

at 11q12.2 (rs174559, posterior probability = 0.91) (Fig. 2; Supplementary Data 5), particularly since 329 

rs174559 was in LD with a recently identified functional variant (rs174557) regulating allelic FADS1 330 

expression in liver cells40. FADS1 encodes fatty acid desaturase 1, which is a key enzyme in the 331 

metabolism of polyunsaturated fatty acids and plays a key role in inflammatory diseases41. Higher 332 

FADS1 levels in the lung tissues were associated with LUAD risk, which is consistent with its role in 333 

increasing the proliferation and migration of laryngeal squamous cell carcinoma through activation of 334 
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the Akt/mTOR pathway42. Among the known loci, colocalization identified TP63 at 3q28 and 335 

ACVR1B at 12q13.13 (Supplementary Data 5). 336 

We then performed a TWAS using LCTCNS eQTL dataset. TWAS identified FADS1 as a 337 

susceptibility gene from the 11q12.2 locus (TWAS P=3.01×10-6) validating the finding from the 338 

colocalization analysis. We further identified ELF5 (TWAS P=1.89×10-8) as a novel gene from a locus 339 

(at 11p13) not originally passing the genome-wide significance threshold based on a single variant test 340 

in our EA discovery GWAS (Supplementary data 6, Methods). For these two loci, we also performed 341 

TWAS conditional analysis to assess whether genetically predicted expression of these genes explain 342 

most of the GWAS signal. When GWAS signal was conditioned on predicted expression of ELF5, 343 

most of the signal disappeared, adding support for ELF5 as the main susceptibility gene in this locus 344 

(Supplementary Fig. 5A). ELF5 encodes E74-like factor 5, a key transcription factor of alveologenesis 345 

of mammary glands43. Lower levels of ELF5 were associated with LUAD risk in the TWAS. Similarly, 346 

when GWAS signal was conditioned on predicted expression of FADS1, the strongest part of the signal 347 

disappeared (Supplementary Fig. 5B). We further performed TWAS analysis using GTEx lung eQTL 348 

dataset (v8, n = 515, ~85% Europeans) and identified five genes from four loci (Supplementary Data 349 

6). While identification of ELF5 was common between two datasets, GTEx identified four unique 350 

genes from three known loci (DCBLD1, MPZL3, JAML, and LINC00674). Notably, FADS1 was 351 

identified only by ancestry-matched LCTCNS eQTL dataset even with a ~4 times smaller sample size. 352 

An investigation of the local environment of susceptibility loci revealed further plausible candidate 353 

genes that could be pursued in laboratory follow-up. For instance, rs137884934 on 3q22.3 maps to  354 

PIK3CB encoding an isoform of p110 catalytic subunit of Class IA PI3K44. Previous studies have 355 

shown that PI3K/Akt/mTOR signaling pathway plays an important role in the development and 356 

progression of non-small cell lung cancer45. Moreover, rs764014 on 15q21.3 is located adjacent to 357 
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NEDD4, which is a negative regulator of tumor suppressor PTEN46, which encodes a lipid phosphatase 358 

which counteracts the growth promoting effect of PI3K pathway47.  359 

Multi-ancestry meta-analysis in East Asian and European populations 360 

To identify variants shared by EA and EUR populations, we performed a fixed effect, multi-ancestry 361 

GWAS meta-analysis including data from samples in EA (11,753 cases and 30,562 controls) and samples 362 

from EUR populations (11,273 cases and 55,483 controls). We identified four additional loci 363 

(Supplementary Table 7) with similar effect sizes in the two populations: rs1130866 (2p11.2, OR = 1.08, 364 

P = 1.56×10-8), rs2320614 (4q32.2, OR = 1.08, P = 6.51×10-9), rs34638657 (16q23.3, OR = 1.09, P = 365 

2.19×10-9) and rs638868 (18q12.1, OR=1.08, P=3.6×10-8). Regional association plots are shown in 366 

Supplementary Fig. 6. A multi-ancestry meta-analysis stratified by smoking status did not reveal loci 367 

specific to never-smokers or individuals with a history of smoking (sample size information in 368 

Supplementary Table 8).  369 

Among the four loci, rs1130866 at 2p11.2 is a missense variant (Ile131Thr) of SFTPB, encoding 370 

surfactant protein B. Pulmonary surfactant lines the alveoli of lung to reduce the surface tension and is 371 

essential for lung function, and increasing circulating level of pro-SFTPB suggested increased lung 372 

cancer risk based on prediagnostic samples48.  Notably, two other novel variants, rs34638657 at 16q23.3 373 

(MPHOSPH6)49, 50 and rs2320614 at 4q32.2 (NAF1)51, are on or near genes implicated in telomere 374 

biology. Together with other known or new loci (rs2736100 TERT, rs4268071 POT1, rs75031349 375 

RTEL152, 53, rs7902587 OBFC154, rs35446936 TERC) (Supplementary data 7), our findings further 376 

support the role of telomere biology in LUAD.  377 

 378 
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Mendelian randomization analysis of telomere length 379 

We performed a Mendelian randomization (MR) analysis to investigate a potential causal relationship 380 

between telomere length and the risk of LUAD. The MR analysis was based on 46 independent 381 

variants identified in a recent multi-ancestry GWAS of telomere length in the TOPMed study55, 382 

cumulatively accounting for 3.74% of telomere length variance (Methods). Since genetic effects on 383 

telomere length showed no evidence of heterogenicity across populations in the TOPMed study, we 384 

used the genetic effects estimated based on all populations in the TOPMed study. Our MR analysis 385 

was based on MR-PRESSO56, a robust approach that estimates causal effects after removing variants 386 

detected with evidence of pleiotropic effects. Genetically predicted longer telomere length was 387 

significantly associated with increased risk of LUAD with similar ORs (per one standard deviation 388 

change in genetically increased telomere length) between the two populations: OR = 2.61 (95% CI = 389 

2.08, 3.28, P = 8.14×10-10) in EA populations, OR = 2.67 (95% CI = 2.07, 3.43, P = 7.14×10-9)  in 390 

EUR populations, consistent with previous MR reports57, 58, 59 as well as a study of white blood cell 391 

DNA telomere length and lung cancer risk in multiple prospective cohorts60. MR analyses stratified by 392 

smoking status showed similar results between never-smokers and individuals with a history of 393 

smoking (Supplementary Table 9). We performed sensitivity analyses using genetic effects estimated 394 

based on Asian and European populations in the TOPMed study separately and found similar results 395 

(Supplementary Table 9).  396 

Comparing the genetics of LUAD in EA and EUR populations 397 

We systematically compared the effect size in EA vs. EUR populations of 38 susceptibility variants for 398 

LUAD. These included 12 variants identified in the current study, 26 variants previously reported in 399 

EA10, 11, 13, 14, 15, 61 and/or EUR16, 19, 20 populations, and results of multi-ancestry meta-analyses 400 

combining data from EA and EUR24 populations (Supplementary Data 8). As expected, 11 SNP 401 
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associations that were independently identified in both populations and through multi-ancestry analysis 402 

were very similar (Figs 3A, B, C). In contrast, out of the 19 SNP associations initially identified in EA 403 

populations, two had MAF< 0.01, 11 showed no evidence of association within EUR populations at 404 

P<0.05 (Fig. 3D and Fig. 3E, Supplementary Data 8), and 11 associations were significantly different 405 

between the two populations with FDR<0.05. Similar population differences were observed among 406 

never-smokers and individuals with a history of smoking (Supplementary Fig. 7). For variants with 407 

MAF>0.01 in both populations, the lack of association in EUR populations did not seem to be driven 408 

by low MAF or lower statistical power, as MAFs in both populations for most variants were similar 409 

and GWAS in both populations had adequate power to detect at least some evidence of association 410 

(Supplementary Data 9). Further, evaluation of gene region plots that spanned 500 kb for these loci 411 

within EUR populations showed no or very weak evidence of association for other variants in the 412 

region as well as the lead variants from the EA populations (Supplementary Figs 8A-J), with one 413 

exception (Supplementary Fig. 8K). For SNPs initially identified in EUR populations, there was 414 

evidence of association for 5 variants in EA populations (Fig. 3F, Supplementary Fig. 9) although all 415 

variants were attenuated in the EA compared to the EUR population and one variant had MAF less 416 

than 1% in EA; moreover, two variants were significantly weaker (Supplementary Data 8, 417 

Supplementary Fig. 9). Similar patterns were observed among never-smokers and individuals with 418 

smoking history (Supplementary Fig. 7). 419 

We used LDSC27 to evaluate the heritability and genetic correlation between individuals with a history 420 

of smoking and never-smokers within each population and POPCORN62 across populations. The 421 

genetic correlation was weaker between never-smokers in EA and EUR populations compared to 422 

individuals with a history of smoking (Supplementary Fig. 10) although power was limited given the 423 
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relatively small sample sizes within each group (Supplementary Table 8). Larger sample sizes are 424 

needed to estimate these characteristics more precisely.  425 

Polygenic risk score and gene-smoking interaction analysis  426 

We investigated whether the polygenic risk score (PRS), which was based on the cumulative effect of 427 

25 independent susceptibility loci for LUAD in EA (Supplementary Table 4), interacted with smoking 428 

status to influence the risk of LUAD, given previous evidence of gene-environment interaction63, 64. 429 

Since only summary statistics were available for some datasets (instead of individual genotype data), 430 

we developed a statistical method for testing the multiplicative smoking-PRS interaction using the 431 

summary statistics for the susceptibility variants (Methods). Compared to the middle quintile that 432 

represents the average risk in the general population, the top quintile had OR of 2.07 (95% CI = 1.99, 433 

2.15) for never-smokers and 1.80 (95% CI = 1.70, 1.89) for individuals with a history of smoking 434 

(Pinteraction = 0.0058, Fig. 4, Supplementary Fig. 11), providing statistical evidence that the association 435 

between PRS and LUAD risk was higher for never-smokers. Moreover, we tested for the presence of 436 

multiplicative interactions between smoking status and each individual susceptibility variant in the 437 

PRS and found five variants with stronger associations in never-smokers than in individuals with a 438 

history of smoking (P<0.05) (Supplementary Table 2).  439 

Genetic architecture, performance of PRS and sample size requirements in EA populations  440 

To further investigate the underlying genetic architecture of susceptibility (Methods) to  LUAD65 in 441 

EA populations, we performed a GENESIS26 analysis based on the GWAS summary statistics for our 442 

larger never-smoking dataset. We estimated that approximately 2,275 (s.e.=1,167) susceptibility 443 

variants are independently associated with LUAD, suggesting that LUAD is a highly polygenic disease 444 

and most of the susceptibility variants have very small effect sizes. Based on the estimated parameters, 445 
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we investigated how the performance of a PRS, measured as the area under the receiver operating 446 

characteristic curve (AUC), depended on the sample size of the training GWAS (Fig. 5). The AUC is 447 

predicted to be 60.7% (95% CI = 56.6%, 64.8%) at the current sample size and will increase to 66.9% 448 

(95% CI = 62.5%, 71.3%) when the sample size increases to 70,000 cases with one control per case 449 

and 68.4% (95% CI = 64.0%, 72.8%) with 1,000,000 controls. Of note, even a small increase of AUC 450 

value for a PRS can help identify many more subjects at risk66.  451 

Discussion 452 

We conducted the largest GWAS of LUAD in an EA population to date and identified 12 novel 453 

susceptibility variants achieving genome-wide significance. In addition, two variants identified from a 454 

previous multi-ancestry meta-analysis achieved genome-wide significance as well in EA alone after we 455 

combined the reported summary data with our independent data. In total, including the previously 456 

described genetic variants, 28 variants at 25 loci have reached genome-wide significance for LUAD in 457 

EA populations, representing major progress in elucidating the genetic basis of LUAD. Finally, a 458 

multi-ancestry meta-analysis identified four additional loci in the combined EA and EUR populations, 459 

with consistent effects in both.  460 

Our eQTL colocalization and TWAS analyses using an ancestry-matched lung eQTL dataset (EA 461 

population) identified novel LUAD susceptibility genes including FADS1 and ELF5. 462 

Importantly, FADS1 is regulated by sterol-response element-binding proteins (SREBPs)67, which 463 

govern lipid metabolism in alveolar type II (ATII) cells68. ELF5 is also expressed in tissues with 464 

glandular/secretory epithelial cells including salivary gland and lung69, 70 and 3.2% of lung alveolar 465 

type II cells express ELF5 in GTEx single-cell expression data. Identification of FADS1 and ELF5 in 466 

our study suggests a role for alveolar lineage-specific genes and pathways in LUAD susceptibility. 467 
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Notably, the missense variant (Ile131Thr), rs1130866, in SFTPB identified through the multi-ancestry 468 

analysis was a protein quantitative trait locus (pQTL) for SFTPB in blood71, where the LUAD risk-469 

associated A allele (Ile131) is correlated with increased SFTPB levels. Importantly, the genomic 470 

region encompassing rs1130866 presents weak LD and high SNP density, consistent with the presence 471 

of a recombination hot spot72, and therefore fine-mapping inspecting low-frequency variants in the 472 

region is warranted. Our TWAS analyses using both ancestry-matched and ancestry-discordant lung 473 

eQTL datasets identified both common and unique genes from each dataset, highlighting potential 474 

benefits of an eQTL dataset of larger sample size and the importance of an ancestry-matched eQTL 475 

dataset, even at a smaller sample size, in detecting susceptibility genes. 476 

We evaluated the presence of a gene-environment interaction with tobacco smoking in our EA data. 477 

We found that the association between a PRS (constructed by the lead variants at the 25 loci with 478 

genome-wide significance in EA) and LUAD in never-smokers was statistically significantly stronger 479 

than in individuals with a history of smoking (Fig. 4).  This finding, together with our recent paper 480 

showing a stronger association of PRS for LUAD risk in non-coal users than in coal users73, provides 481 

evidence that genetic susceptibility may vary by exposure patterns in EA populations.  482 

We systematically compared top GWAS findings that had been initially reported in one or the other or 483 

both populations. After accounting for differences in MAFs and statistical power as well as the local 484 

LD pattern of each locus (500 kb each side of the lead variant), we found that a substantial number of 485 

the associations initially reported in EA populations showed no signal in EUR populations. It might 486 

reflect causal variants for these loci not being tagged well in the EUR populations. This might also 487 

suggest important differences between EA and EUR in the genetic architecture of LUAD samples, 488 

which could be caused by differential environmental exposures. Finally, this observation is also 489 

consistent with distinct tumor molecular characteristics (e.g., EGFR mutation prevalence was higher in 490 
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Asians than EUR populations) observed in LUAD suggesting different etiologies influenced by genetic 491 

and/or environmental factors13, 74, 75. 492 

Our genetic architecture analysis suggested that LUAD is a highly polygenic disease. Expanding 493 

GWAS of LUAD will continue to identify many risk variants albeit with smaller effect sizes. 494 

Moreover, our analysis predicts that the AUC of PRS for EA never-smokers could be improved to 495 

66.9% for a GWAS training dataset with 70,000 cases and 70,000 controls that could be further 496 

increased with a greater number of controls. Thus, an expanded GWAS in the future can lead to the 497 

substantial improvement in knowledge about the underlying genetic architecture of LUAD; increased 498 

understanding of how known or suspected lung cancer environmental risk factors interact with genetic 499 

susceptibility; and assessment of the potential clinical utility of risk models integrating both genetic 500 

and non-genetic risk factors76, 77. 501 

There are several limitations in the current study. First, the discovery phase included subjects of 502 

diverse EA populations (Mainland China 38.2%, Japan 45.9%) and the replication phase only included 503 

subjects from Japan. However, our data did not show evidence of heterogeneity in effect sizes for 504 

susceptibility variants between Han Chinese and Japanese populations or across geographic locations 505 

(Supplementary Table 5), suggesting a minimal impact for using a single EA population for 506 

replication. Second, we were underpowered to conduct formal heritability correlation analyses to 507 

compare the genetic architecture in EA and EUR populations stratified by smoking status; larger 508 

studies will be needed to conclusively characterize differences. Furthermore, completely elucidating 509 

the genetic basis of ancestry differences requires detailed information about age of onset, family 510 

history and exposures. Finally, rs4268071 (Table 2) achieved genome-wide significance in the 511 

discovery data but replication data were not available. While the significance was primarily driven by 512 

Japanese samples (MAF=0.04 in Japanese and <1% in other populations), there was no evidence of 513 
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heterogeneity in effect estimates across EA populations. Replication is warranted to further establish 514 

its etiological role.  515 

In conclusion, we identified 12 novel variants in a GWAS of LUAD in EA populations as well as 4 516 

novel variants in a multi-ancestry meta-analysis of EA and EUR populations. Colocalization and 517 

TWAS analyses using an ancestry-matched lung tissue eQTL dataset identified candidate susceptibility 518 

genes with suggested roles in alveolar lineage. At the same time, a large majority of variants identified 519 

in the EA GWAS showed no evidence of association in EUR populations. Larger samples sizes with 520 

data on environmental risk factors will be needed to further characterize the etiologic differences 521 

between these populations. Finally, our genetic architecture analysis suggests that the performance and 522 

the clinical utility of the PRS will be substantially improved by larger GWAS in the future.  523 

 524 

  525 
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Methods 526 

Ethnics statement 527 

All participants provided informed consent according to protocols that were evaluated and approved by 528 

the internal review boards of the contributing centers. Protocols used to generate new, unpublished 529 

data presented in this paper were approved by the National Cancer Center Institutional Review Board, 530 

Japan and the Aichi Cancer Center Ethics Committee, Japan. 531 

 532 
Overview of study 533 
 534 
We conducted a two-phase GWAS meta-analysis of LUAD in EA populations, including Female Lung 535 

Cancer Consortium in Asia (FLCCA), Nanjing Lung Cancer Study (NJLCS) 10, 24, National Cancer 536 

Center of Japan (NCC) Research Institute and Aichi Cancer Center (ACC). For the FLCCA study, 537 

details of the study design, participating studies, case ascertainment, genotyping, and quality controls 538 

have been described in detail9. Briefly, this international consortium is composed of Asian women who 539 

never smoked and resided in Mainland China, Hong Kong, Singapore, Taiwan, South Korea and Japan 540 

at the time of recruitment. All were genotyped using the Illumina 660W, 370K and 610Q microarrays.  541 

The NCC study included lung cancer patients from NCC and BioBank Japan (BBJ) and non-cancer 542 

controls from the Japan Public Health Center-based Prospective Study and the Japan Multi-543 

Institutional Collaborative Cohort Study, genotyped by Illumina HumanOmniExpress and 544 

HumanOmni1-Quad genotyping platforms. The ACC study included lung cancer patients from the 545 

Aichi Cancer Center, Kyoto University, Okayama University and Hyogo College of Medicine and 546 

non-cancer controls from the Nagahama Study and the Aichi Cancer center. Samples were genotyped 547 

by Illumina 610k and Illumina660k platforms15, 78. The NJLCS study at the Nanjing Medical 548 

University was based on meta-analysis of three studies: the Nanjing GWAS with subjects from 549 
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Nanjing and Shanghai, the Beijing study with subjects from Beijing and Wuhan (genotyped by 550 

Affymetrix Genome-Wide Human SNP Array 6.0) and the Oncoarray GWAS10, 79, 80.  551 

The replication study included cases from multiple sources (BBJ, NCC, Kanagawa Cancer Center, 552 

Akita University Hospital, Tokyo Medical and Dental University, Hospital and Gunma University 553 

Hospital, and Fukushima Medical University School of Medicine) and non-cancer controls from 554 

BioBank Japan. Cases were genotyped using the Invader assay and the control samples in BioBank 555 

Japan were genotyped using the Illumina HumanOmniExpress genotyping platform.  556 

For the multi-ancestry meta-analyses of LUAD and cross-population comparison of top GWAS 557 

findings with both never-smokers and individuals with a history of smoking, we used 11,273 cases and 558 

55,483 controls of European ancestry in the Integrative Analysis of Lung Cancer Etiology and Risk 559 

team of the International Lung Cancer Consortium (INTEGRAL-ILCCO)16 (Supplementary Table 8).  560 

For the multi-ancestry analysis and cross-population comparisons of smokers, we used European 561 

samples genotyped with the OncoArray platform in the ILCCO study (Supplementary Table 8). For the 562 

multi-ancestry and cross-population comparisons analysis of never-smokers, we used the GWAS of 563 

European never-smoking subjects from Hung et al. (2019)21.  564 

Quality control, imputation and association analysis in EA populations 565 

For each study, SNPs with minor allele frequency (MAF) < 0.01, Hardy-Weinberg Equilibrium (HWE) 566 

p-value < 10-6 in controls were removed; subjects with missing rate > 3%, sex discrepancy, or 567 

displaying non-East Asian ancestry based on principal component analysis scores were removed. 568 

Moreover, for any pairs of subjects estimated to be related with identity by descent pihat > 0.10 using 569 

PLINK (V2.0), we removed one subject. Imputation was performed using IMPUTE2 and the 1000 570 

Genomes Project East Asian samples (Phase 3) as reference. After imputation, SNPs with imputation 571 

quality score ≥ 0.5 were used for association analysis in each study. Logistic regression under an 572 
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additive model was performed using SNPTest (V2) or PLINK2 based on imputed genotypic dosage 573 

data adjusting for smoking (if both smokers and never smokers were present) and PCA scores to 574 

control for population stratification. Meta-analysis was performed using inverse-variance weighted 575 

fixed effects methods. All p-values were two-sided. We consider the following variants as novel for 576 

the GWAS in EA: (1) the lead variant with p < 5×10-8 in a locus that has not been previously reported 577 

in either EA or EUR populations, or (2) a secondary variant with p < 5×10-8  conditioning on the lead 578 

variant in a previously reported locus in either EA or EUR populations with the requirement that the 579 

LD R2<=0.2  between the secondary and the lead variants in both populations. 580 

LDSC27 was used to estimate the heritability attributed to genome-wide common variants and to assess 581 

the potential inflation due to insufficient correction of population stratification. LDSC was also used to 582 

estimate the genetic correlation of LUAD between never-smokers and individuals with a history of 583 

smoking in each population. We used POPCORN62 to estimate the genetic correlation between EA and 584 

EUR populations because LD patterns are expected to be different. To account for the difference of 585 

allele frequencies in the two populations, we also used POPCORN to estimate the cross-population 586 

genetic-impact correlation that was defined as the correlation of population specific phenotypic 587 

variance explained by each SNP.   588 

Conditional analysis and fine mapping 589 

To identify independently associated SNPs at an established susceptibility locus, we performed 590 

conditional analysis using software Genome-wide Complex Trait Analysis (GCTA)81 based on the 591 

GWAS meta-analysis summary results of EA populations. LD for the conditional analysis was 592 

calculated using a reference population of 4,544 controls from the FLCCA study to achieve a desirable 593 

accuracy. Here, genotypes for FLCCA were imputed using IMPUTE2 and the 1000 Genomes Project 594 

(Phase 3) reference samples with EA ancestry. SNPs with imputation quality < 0.5 were excluded from 595 
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the reference set for conditional analysis. Conditional analysis was restricted to 14 loci with lead SNPs 596 

achieving genome-wide significance in the discovery-phase meta-analysis. We did not perform 597 

conditional analyses for other new SNPs that did not achieve genome-wide significance in the 598 

discovery-phase meta-analysis because secondary SNPs would not survive multiple testing correction. 599 

Conditional analysis was restricted to SNPs less than 500kb from the lead SNP of each locus. To 600 

identify multiple potentially independent SNPs in one locus, we performed stepwise conditional 601 

analysis using GCTA. All SNPs identified with P < 5×10-8 and the lead SNP of the locus were put into 602 

one model to derive the joint estimate of ORs, appropriately adjusting for LD among all SNPs. Only 603 

SNPs with p-value < 5×10-8 in both conditional and joint analyses were considered to be independently 604 

associated SNPs.  605 

For 11 out of the 14 loci with genome-wide significance in the discovery phase, we performed a 606 

Bayesian fine-mapping analysis using FINEMAP33 to nominate 95% credible set variants using the 607 

same set of imputed genotypes of 4,544 FLCCA subjects as an LD reference. We did not perform fine-608 

mapping analysis for two loci in MHC regions, because of the complex and extensive LD patterns in 609 

this region. We also excluded the locus at 7q31 because the lead SNP, rs4268071, had MAF<1% in our 610 

LD reference population. MAF of this variant is 4% in the Japanese populations (45.8% of cases and 611 

74.5% of controls in the discovery set) but <1% in other EA populations included in our study. For 612 

FINEMAP analysis, we tested the variants within +/- 500 kb of the lead SNP and set the number of 613 

maximum causal variants as the number of independent signals (P≤10-5) observed in the conditional 614 

analysis for each locus. 615 

Proportion of familial risk explained 616 

We considered a set of identified variants for LUAD. For SNP t, we defined 𝑝! as the frequency of 617 

the risk allele and 𝑂𝑅! as the estimated per-allele odds ratio. Under a multiplicative model, the 618 
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fraction of the familial risk explained by the set of SNPs was calculated as ∑ 𝑙𝑜𝑔(𝜆!)/𝑙𝑜𝑔(𝜆")! , 619 

where 𝜆" is the observed familial risk to the first degree of LUAD cases and 𝜆! is the familial risk due 620 

to the 𝑡!# SNP:  621 

𝜆! =
$!%&!

"'()*$!)
($!%&!')*$!)"

.                                                              (1) 622 

Heritability partitioning in functional classes and tissue-specific analyses 623 

Stratified LD score regression (sLDSC)82 was conducted to identify functional annotations enriched for 624 

LUAD heritability using summary statistics from the discovery phase of meta-analysis in EA 625 

populations. In addition to the functional annotations provided by the sLDSC package, we also 626 

analyzed the gene sets defined by smoking studies: differentially expressed genes in peripheral blood 627 

mononuclear cells upon nicotine treatment (“PBMC nicotine” gene set) from Moyerbrailean et al.83, 628 

those in non-tumorous lungs between current- and never-smokers (“Lung smoking” gene set) from 629 

Bosse et al.84, and those in normal bronchial airway epithelial cells between current- and never-630 

smokers (“Airway smoking” gene set) from Beane et al.85. An annotation was considered to be 631 

significantly enriched for LUAD heritability if FDR < 0.05.  632 

We then performed sLDSC to prioritize relevant tissue types (lung, blood/immune, and brain/CNS) 633 

using tissue-specific expressed genes from GTEx v6p (53 tissue types) and other public expression 634 

datasets (152 tissue types), as well as tissue-specific chromatin annotations from EnTEX (111 635 

annotations in 26 tissue types) and Roadmap dataset (378 annotations in 85 tissue types) as described 636 

by Finucane and colleagues37. We used GTEx v6p expression data based on a comparison with v8 637 

data, where a median of 83% of tissue-specific differentially expressed genes were shared between two 638 

versions. In general, we did not find significant enrichment for individual annotations after adjusting 639 

for the multiple testing. To increase the power of prioritizing relevant tissues (lung, blood/immune, and 640 

brain/CNS), we performed an aggregated analysis to test if p-values from one tissue (e.g., lung) tended 641 
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to be smaller than those from the other two tissue groups (blood/immune, and brain/CNS) using the 642 

Wilkinson rank test.  643 

eQTL colocalization analysis and TWAS 644 

EA lung eQTL dataset is based on a cohort of 115 never-smoking LUAD patients from Taiwan, 645 

referred to as LCTCNS (Lung cancer tissue cohort of never-smokers). Expression array data was 646 

obtained for non-tumor lung tissues of these patients using the Illumina WG-DASL HumanRef-8 v3 or 647 

HumanHT-12 v4 BeadChip (Illumina Inc.) (Gene Expression Omnibus accession number 648 

GSE46539)86. Genotype data from buffy coat DNA was obtained using the Illumina Human 660W 649 

Quad BeadChip. A systematic quality control for the genotype data was performed as previously 650 

described12 (SNPs were excluded if call rate < 90%, MAF < 5%, or P<0.0001 based on the Hardy-651 

Weinberg equilibrium test. Samples were excluded if call rate < 90%, sex discrepancies based on the X 652 

chromosome heterozygosity, contaminated samples with high heterozygosity scores, or first or second- 653 

degree relatives), and imputation was carried out using Minimac4 (V4.0.3) with the 1000 Genomes 654 

reference set (all populations). For eQTL analysis, expression data was processed for background 655 

correction as previously described86. Briefly, we kept the probes that are present in both the BeadChip 656 

platforms and further removed those with low expression levels (detection p > 0.05). Based on the data 657 

at the remaining 24,216 probes, we applied model-based background correction. Log2-transformed 658 

expression levels of 24,216 probes were then used to obtain 20 latent factors based on probabilistic 659 

estimation of expression residuals (PEER) while specifying batch, sex, age, medical operation status, 660 

RNA integrity number, and RNA input quantity as known confounders. The expression residuals from 661 

PEER were then inverse rank transformed to the standard normal distribution (the inverse rank 662 

transformed residuals) and were used as the dependent variable in the expression levels for eQTL 663 

analysis. eQTL analysis was conducted for 29 GWAS lead SNPs (all EA loci including discovery, 664 
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replication, and conditional signals plus new loci from the multi-ancestry GWAS). In LCTCNS, all 665 

these SNPs have a MAF of > 0.01. For each GWAS lead SNP, its association with each probe located 666 

within +/- 500kb of the SNP was tested using an additive linear model where the dependent variable 667 

was the expression level as described above and the independent variable was the effect allele count. 668 

Based on the resulting p-values of these eQTL analyses for all 29 SNPs, the corresponding Benjamini–669 

Hochberg FDR was calculated. Colocalization analysis was performed using eCAVIAR38 and 670 

HyPrColoc39 via ezQTL platform for eight GWAS lead SNP-eQTL gene pairs displaying FDR < 0.05 671 

in LCTCNS (Supplementary Data 5). For each of these eight SNP-probe pairs, we further examined 672 

the association between the probe and SNPs within +/- 100kb of the lead SNP using Matrix eQTL to 673 

obtain the summary statistics as an input to ezQTL for colocalization analysis using HyPrColoc and 674 

eCAVIAR. For loci on MHC regions, +/- 10kb window was used for computational efficiency of 675 

colocalization analyses. LD matrix was obtained from 1000 Genomes EA populations. For HyPrColoc, 676 

posterior probability of > 0.7 was used as a cutoff for colocalization. For eCAVIAR analysis, 677 

colocalization posterior probability (CLPP) score > 0.01 was used as a cutoff for colocalization.  678 

For TWAS, we adopted FUSION87 using LCTCNS or GTEx v8 lung eQTL data and summary 679 

statistics of EA discovery GWAS meta-analysis. We computed weights using the elastic-net regression 680 

(enet) model for 24,216 expression probes (LCTCNS) or 24,687 genes (GTEx v8 lung) and cis-SNPs 681 

within 500 kb of the gene for each probe. LD matrix was obtained from 1000 Genomes EA 682 

populations. We performed association analysis for 1,875 expression probes (LCTCNS) or 5,534 genes 683 

(GTEx v8 lung) with cross-validation cutoff of R2 > 0.05 based on the elastic net model. We defined a 684 

significant transcriptome-wide association as TWAS P < 2.6 x 10-5 (0.05/1,875; LCTCNS) or P < 9× 685 

10-6 (0.05/5,534; GTEx v8 lung) based on Bonferroni correction. For two loci passing this cutoff from 686 

LCTCNS analysis (ELF5 and FADS1), we further performed conditional analysis as implemented in 687 
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FUSION by conditioning the GWAS signal on the predicted expression of the probe with the best 688 

TWAS P-value. 689 

 690 
Mendelian randomization 691 

We performed MR analysis to investigate the potential causal relationship between telomere length 692 

and the risk of LUAD. MR analysis was based on 46 common SNPs identified in a recent multi-693 

ancestry meta-analysis of telomere length in the TOPMed55 study. The original paper identified 48 694 

variants associated with telomere length that collectively explained 4.35% of telomere length variance; 695 

two of them at the TERT locus were excluded using the LD filter R2<0.05 that together explained 696 

0.61% of the telomere length variance; the remaining 46 variants included in our MR analysis 697 

explained 3.74% of telomere length variance. Because there was no significant heterogeneity of effect 698 

sizes on telomere length across populations (Table S4 in Taub et al.55), the primary MR analyses were 699 

based on the estimated effect sizes combining all samples in the TOPMed study in a joint model for 700 

telomere length. Analyses were based on MR PRESSO88, a powerful and robust approach designed to 701 

deal with widespread horizontal pleiotropy. This approach uses a formal test framework to (1) detect 702 

the presence of horizontal pleiotropy, (2) detect variant outliers, (3) evaluate distortion, and (4) re-703 

estimate causal effect sizes after removing potentially problematic variants. According to simulations, 704 

this approach is best suited when horizontal pleiotropy occurs in < 50% of instruments. This approach 705 

identified 5-7 outlier variants in our data. The estimated 𝛽 from MR analysis was converted as OR, 706 

interpreted as risk increase per standard deviation (640 base pairs89) increase of the genetic predicted 707 

telomere length.  708 

Testing the interaction between polygenic risk score and smoking status 709 

We investigated whether the PRS, which was calculated based on 25 independent SNPs associated 710 

with LUAD in EA populations (Supplementary Table 4, excluding three variants identified by 711 
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conditional analysis), interacted with smoking status for LUAD risk. Because we have only GWAS 712 

summary statistics instead of individual-level data for smokers and never-smokers, we developed a 713 

statistical method for testing the interaction using summary statistics separately from smokers and 714 

never-smokers. Suppose that we have 𝑛)' smoking cases, 𝑛"'	never-smoking cases, 𝑛)* smoking 715 

controls and 𝑛"* never-smoking controls. Let 𝑥,!-' and 𝑥.!-* be the genotype of SNP 𝑡 for the 𝑖!# case 716 

and the 𝑗!# control, where 𝑠 = 1 indicates smokers and 0 indicates never-smokers. Given smoking 717 

status 𝑠, we define 𝑃𝑅𝑆,-' = ∑ 𝛽!𝑥,!-'/
!0)  and 𝑃𝑅𝑆.-* = ∑ 𝛽!𝑥.!-*/

!0)  as the PRS for cases and controls, 718 

respectively. For smokers (𝑠 = 1), the association between PRS and disease risk can be quantified as: 719 

Δ) =
1
𝑛)': 𝑃𝑅𝑆,)'

1#$

,0)
−

1
𝑛)*: 𝑃𝑅𝑆.)*

1#%

.0)
,																																											(2) 726 

the difference of average PRS between cases and controls. Similarly, we define Δ" to be the difference 720 

of average PRS between cases and controls for never-smokers. Testing the PRS*smoking interaction 721 

can be done using 𝑍 = 2#*2&

3456(2#")'789(2&")
.	Under the null hypothesis of no interaction for all variants, 722 

𝑍~𝑁(0,1) asymptotically. Assuming SNPs are independent, we derive 𝑍 = ∑ (𝑤!)𝑧!) −𝑤!"𝑧!")/
!0) , 723 

where 𝑧!- is the z-score for testing association for SNP 𝑡 in subjects with smoking status 𝑠. The weight 724 

is given as  725 
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Here, (𝜎!-')= and (𝜎!-*)=  are the genotypic variances for SNP 𝑡 in cases and controls, respectively. 728 

We note that both discovery and replication data are included for testing PRS smoking interaction  729 



30 
 

novel variants included in our PRS to maximize the power of statistical testing. In particular, only the 730 

discovery data were available and included for previously identified variants; both discovery and 731 

replication data were included for new variants to increase the statistical power. To do this, 𝑤!- was 732 

modified to have SNP-specific sample sizes.  All analyses were done using R (x64 4.1.0). 733 

GENESIS analysis for projecting yield of future expanded studies 734 

The genetic architecture of a disease is defined as the number of susceptibility SNPs and the 735 

distribution of their effect sizes26. When these parameters are estimated, one can estimate the number 736 

of variants achieving genome-wide significance and the accuracy of a polygenic risk model trained 737 

using a GWAS with a given sample size. In the current study, we estimated the genetic architecture 738 

using GENESIS (GENetic EStimation and Inference in Structured samples)26 based on the GWAS 739 

summary statistics with LD scores calculated based on the genotypes of the subjects of EA ancestry in 740 

the 1000 Genomes Project. Since GENESIS requires a large sample size to derive reliable estimates, 741 

we performed analysis only for never-smokers in EA. The three-component model 742 

𝛽>~𝜋𝑝)𝑁(0, 𝜎)=) + 𝜋𝑝=𝑁(0, 𝜎==) + (1 − 𝜋)𝛿" best fit the never-smoker data in EA, where 𝛽> 743 

represents effects sizes, 𝜋 denotes the fraction of truly associated variants in the genome, 𝛿" denotes 744 

the point mass at zero, 𝜎,= denotes the variance of effect sizes for the 𝑖!# component, 𝜋𝑝, (𝑖 = 1,2) 745 

represents the fraction of variants with effect size following 𝑁(0, 𝜎,=). Based on this estimated genetic 746 

architecture, we calculated the expected number of variants reaching genome-wide significance for a 747 

given GWAS and calculated the expected area under the receiver operating characteristic curve (AUC) 748 

for an additive polygenic risk prediction model built based on a discovery GWAS for a given sample 749 

size. The uncertainty of the AUC was induced by the uncertainty in the estimated parameters in 750 

GENESIS (Γ = (𝜋, 𝑝), 𝑝=, 𝜎)=, 𝜎==)) because of the limited sample size in our summary data. We used a 751 

resampling approach to estimate the standard error of AUC. Briefly, we randomly simulated 1000 sets 752 
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of parameters 𝛤? given the estimated ΓN and the estimated covariance matrix, and calculated AUCk for 753 

each simulated parameter 𝛤? for a given sample size. The standard error was calculated based on the 754 

1000 sets of AUC values.  755 

 756 

Data Availability 757 

The GWAS data for the FLCCA study is available at dbGap under accession phs000716.v1.p1 758 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000716.v1.p1). The 759 

GWAS data for the Japanese populations are available at the Integrative Disease Omics Database 760 

(https://integbio.jp/dbcatalog/en/record/nbdc00071) under accession code GWAS031 and BioBank 761 

Japan (https://biobankjp.org/en/). The  GWAS data for the European populations contributing to this 762 

study are available at dbGap under accession phs000877.v1.p1 (Transdisciplinary Research Into 763 

Cancer of the Lung (TRICL), https://www.ncbi.nlm.nih.gov/projects/gap/cgi-764 

bin/study.cgi?study_id=phs000876.v2.p1), phs001273.v3.p2 (Oncoarray Consortium, 765 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001273.v3.p2).  The 766 

expression data of LCTCNS (Lung cancer tissue cohort of never-smokers) were publicly available at 767 

Gene Expression Omnibus under accession number GSE46539. The expression and eQTL data from 768 

GTEx (v6 and v8) were obtained from https://gtexportal.org/home/datasets. Full TWAS results are 769 

included in Supplementary Data 6. The summary statistics for the meta-analysis in East Asian 770 

populations with p≤10-4 are included in Supplementary Data 10.  771 

 772 
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 777 
 778 
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Table 1. Demographic characteristics of the subjects in the discovery and the replication datasets for a GWAS of 1236 
lung adenocarcinoma in East Asians 1237 

 1238 

 Discoverya Replicationb Combined 
 Cases Controls Cases Controls Cases Controls 
Male 4,021 (34%) 11,609 (38%) 5,650 (57%) 62,596 (52%) 9,671(45%) 74,205 (49%) 
Female 7,732 (66%) 18,953 (62%) 4,255 (43%) 57,518 (48%) 11,987 (55%) 76,471 (51%) 
Individuals with 
smoking history  3,751 (32%) 9,780 (32%) 6,108 (62%) 58,430 (49%) 9,859 (46%) 68,210 (45%) 
Never-smokers 8,002 (68%) 20,782 (68%) 3,797 (38%) 61,684 (51%) 11,799 (54%) 82,466 (55%) 
Total 11,753 30,562 9,905 120,114 21,658 150,676 

 1239 
a The discovery dataset includes 4,438 cases and 4,544 controls from the FLCCA study, 1,923 cases and 3,544 1240 
controls from the NJLCS study, 3,921 cases and 19,910 controls from the NCC study and 1,471 cases and 1241 
2,564 controls from the ACC study. b The replication dataset consists of new candidate variant genotyping 1242 
conducted in Japanese study LUAD subjects by the NCC study center and controls from the BioBank Japan. 1243 
More details can be found in Supplementary Table 1 and Methods.  1244 
 1245 
 1246 
 1247 
 1248 
 1249 
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Table 2: Novel genetic variants associated with lung adenocarcinoma in East Asians. All p-values are nominal and two-sided. 
 

      Discovery Replication Combined 

Chr BP SNP Genes Eff/Ref EAF OR (95% CI) P OR (95% CI) P OR (95% CI) P 

3 138570011 rs137884934 PIK3CB T/C 0.09 0.81(0.74,0.89) 6.33×10-6 0.80(0.76,0.85) 1.88×10-15 0.80(0.77,0.84) 6.21×10-20 
2 25757709 rs682888 DTNB C/T 0.47 0.89(0.86,0.93) 4.94×10-10 0.91(0.88,0.94) 1.57×10-10 0.90(0.88,0.92) 5.96×10-19 
11 61581656 rs174559 FADS1 A/G 0.39 0.91(0.88,0.94) 6.10×10-7 0.91(0.89,0.94) 6.22×10-9 0.91(0.89,0.93) 1.93×10-14 
15 49757466 rs71467682a FGF7, SECISBP2L G/A 0.31 0.91(0.87,0.95) 2.46×10-6 0.90(0.88,0.93) 2.30×10-9 0.91(0.88,0.93) 2.81×10-14 
10 126324209 rs10901793 FAM53B, METTL10 A/G 0.30 1.10(1.06,1.14) 3.14×10-7 1.07(1.04,1.10) 1.03×10-5 1.08(1.06,1.11) 3.04×10-11 
7 124373384 rs4268071b GPR37 T/G 0.04 1.39(1.25,1.54) 7.27×10-10 NA NA 1.39(1.25,1.54) 7.27×10-10 
6 53389995 rs531557 GCLC T/A 0.60 0.90(0.87,0.94) 7.73×10-7 0.94(0.91,0.97) 8.49×10-5 0.93(0.90,0.95) 9.25×10-10 
19 725066 rs116863980 PALM A/G 0.06 1.31(1.16,1.47) 7.94×10-6 1.17(1.09,1.26) 2.50×10-5 1.21(1.14,1.29) 2.63×10-9 
15 56454223 rs764014 RFX7 G/A 0.47 0.91(0.88,0.95) 5.75×10-7 0.95(0.92,0.98) 7.36×10-4 0.94(0.91,0.96) 7.73×10-9 
4 44174404 rs117715768 KCTD8 T/C 0.06 1.24(1.14,1.34) 4.48×10-7 1.10(1.04,1.17) 1.28×10-3 1.15(1.09,1.21) 2.45×10-8 
4 157894892 rs1373058 PDGFC A/T 0.57 1.10(1.05,1.15) 8.55×10-6 1.06(1.03,1.09) 3.60×10-4 1.07(1.05,1.10) 3.86×10-8 

a: rs71467682 is in weak LD with rs77468143 (R2 = 0.27 in EA) that was previously reported to be associated with LUAD in EUR populations16.  
b: Replication data not available.   
 
 
 
Table 3: Conditional and joint analyses identified independently associated risk SNPs for lung adenocarcinoma at two existing loci in East Asians. 
All p-values are nominal and two-sided. 

   Gene   GWAS analysisa Conditional analysisb Joint analysisc 

Chr BP SNP Eff/Ref  EAF OR (95% CI) P OR (95% CI) P OR (95% CI) P 
5 1280477 rs13167280 

TERT 
A/G 0.22 1.47(1.37,1.57) 6.99×10-30 1.33(1.24,1.42) 8.36×10-17 1.29(1.20,1.38) 4.07×10-13 

5 1286516 rs2736100 A/G 0.56 0.75(0.72,0.77) 7.92×10-58   0.80(0.77,0.83) 9.83×10-32 
5 1290319 rs62332591 G/T 0.52 0.79(0.75,0.83) 3.53×10-23 0.87(0.83,0.91) 2.95×10-9 0.87(0.83,0.92) 3.21×10-8 
6 41483390 rs9367106 FOXP4 C/G 0.32 1.20(1.15,1.26) 1.06×10-14   1.19(1.14,1.25) 2.39×10-13 
6 41483960 rs12664490 T/C 0.16 0.80(0.75,0.85) 5.52×10-12 0.81(0.76,0.86) 1.34×10-10 0.81(0.76,0.86) 1.24×10-10 
a: Data from single-variant analysis in GWAS.   
b: Conditional analysis using GCTA, conditioning on the lead variant in each locus.  
c: Joint analysis using GCTA including the lead variant and the significant variants in conditional analysis. 
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Legend 

Fig. 1. Manhattan plot for GWAS meta-analysis of lung adenocarcinoma in East Asians. The x-axis 

represents chromosomal location, and the y-axis represents -log10(p-value). All p-values were two-sided 

and not adjusted for multiple testing. The red horizontal line denotes the p-value threshold for declaring 

genome-wide significance at 5 × 10*@. For each box, red text represents a novel variant (12 novel 

variants, including the lead variants from 10 novel loci, rs12664490 by conditional analysis at 6p21.1, a 

locus previously reported in East Asians, and rs71467682 at 15q21.2, a locus preciously reported in 

Europeans); black text represents a previously reported association (16 variants in total, including three 

independently associated variants in 5p15.33 locus). For each locus, a green circle represents the top p-

value from the discovery samples, a red diamond represents the p-value combining the discovery and the 

replication data, a black square represents the p-value combining our discovery data and Chinese samples 

in Dai et al.24 (for three variants identified in a cross-ancestry analysis of East Asians and Europeans in 

Dai et al.24, Supplementary Table 3). In summary, 28 variants at 25 loci achieved genome-wide 

significance, including 16 previously reported variants and 12 novel variants.  

 

Fig. 2. Colocalization of lung adenocarcinoma GWAS signal from the new locus on Chr11 with FADS1 

eQTL signal. Colocalization analysis was performed using HyPrColoc with summary statistics from 

Taiwanese lung eQTL data (for FADS1 gene, Panel A) and those of EA GWAS discovery set (Panel B). 

LD R2 (1000 Genomes, EA) of each SNP with the GWAS lead SNP, rs174559 (red circle), is color-coded 

as shown in the top band. Colocalization posterior probability (PP) is shown next to the candidate SNP, 

rs174559. Note that the p-value of rs174559 in GWAS was based on the discovery data and did not 

include the Japanese replication data. All eQTL p-values were two-sided and not adjusted for multiple 

testing. 
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Fig. 3. Comparing odds ratios (ORs) of lung adenocarcinoma susceptibility variants between East Asian 

(EA) and European (EUR) populations. Here, the effect allele was defined as the minor allele in EA.  

Each error bar represents the 95% confidence interval of the OR (the center). A: Susceptibility variants 

previously discovered (at genome-wide significance) in both EA and EUR populations. B: Variants 

previously identified by multiple-ancestry meta-analysis of Chinese and EUR populations; C: Variants 

were identified by multiple-ancestry meta-analysis combining EA samples in our study and EUR samples 

in ILLCO. D: Variants identified only in EA populations. E: Novel variants identified in the current 

study; F: Variants identified only in EUR populations. Variants are labeled with *, **, *** and **** 

corresponding to 0.01 ≤ phet < 0.05, 0.001 ≤ phet < 0.01, 0.0001 ≤ phet < 0.001 and phet < 0.0001, 

respectively; here, phet (t-statistic, two-sided) is the p-value for testing the heterogeneity of effect sizes 

between EA and EUR populations. Sample sizes for EUR populations in all panels: 11,273 cases and 

55,483 controls. Sample sizes for EA populations: 11,753 cases and 30,562 controls for panels A, B, C, 

D, and F; 21,658 cases and 150, 676 controls for panel E. 

 

 

Fig. 4. A polygenic risk score (PRS) is more strongly associated with risk of lung adenocarcinoma in 

never-smokers than in individuals with a history of smoking (P = 0.0058). The PRS was defined based on 

25 independent variants that achieved genome-wide significance in EA with weights derived from the 

meta-analysis of the current study (Supplementary Table 4). The odds ratios (ORs) and the standard errors 

of the 12 novel variants were based on 21,658 cases and 150, 676 controls. The ORs and the standard 

errors of the other 13 variants were based on 11,753 cases and 30,562 controls. The figure shows the ORs 

and their 95% confidence intervals comparing each quintile group to the middle quintile for individuals 

with a history of smoking (blue) and never-smokers (red).  
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Fig. 5. The expected area under the receiver operating characteristic curve (AUC) of a polygenic risk 

score (PRS) built based on a GWAS of specified sample sizes for lung adenocarcinoma in never-smoking 

East Asians. For “1 million controls”, the x-coordinate represents the number of cases, assuming the study 

has 1 million controls. For “Equal number of cases and controls”, the x-coordinate represents the numbers 

of cases, assuming the same number of cases and controls. 


