12 research outputs found

    Mechanisms of Stress Tolerance in Xerophyte \u3cem\u3eZygophyllum xanthoxylum\u3c/em\u3e and Their Application in Genetic Improvement of Legume Forages

    Get PDF
    Xerophytes, naturally growing in desert areas, have evolved multiple protective mechanisms to survive and grow well in harsh environments. Zygophyllum xanthoxylum, a succulent xerophyte with excellent adaptability to adverse arid environments and a fodder shrub with high palatability and nutrient value, colonizes arid areas in China and Mongolia. In this study, we found that Z. xanthoxylum grew better responding to salt condition with a typical feature for halophytes and became more tolerant to drought in the presence of moderate salinity (50 mM NaCl); 50 mM NaCl alleviated deleterious impacts of drought on the growth of Z. xanthoxylum by improving the relative water content, inducing a significant drop in leaf water potential and, concomitantly, increasing leaf turgor pressure and chlorophyll concentrations resulting in an enhancement of overall plant photosynthetic activity. Subsequently, co-expression of genes encoding the tonoplast Na+/H+ antiporter (ZxNHX) and H+-PPase (ZxVP1-1) which involve in leaf Na+ accumulation under stress condition by compartmentalizing Na+ into vacuoles in Z. xanthoxylum significantly improved both drought and salt tolerance in legume forages, Lotus corniculatus L. and Medicago sativa L

    DataSheet_1_Heterologous biosynthesis of isobavachalcone in tobacco based on in planta screening of prenyltransferases.docx

    No full text
    Isobavachalcone (IBC) is a prenylated chalcone mainly distributed in some Fabaceae and Moraceae species. IBC exhibits a wide range of pharmacological properties, including anti-bacterial, anti-viral, anti-inflammatory, and anti-cancer activities. In this study, we attempted to construct the heterologous biosynthesis pathway of IBC in tobacco (Nicotiana tabacum). Four previously reported prenyltransferases, including GuILDT from Glycyrrhiza uralensis, HlPT1 from Humulus lupulus, and SfILDT and SfFPT from Sophora flavescens, were subjected to an in planta screening to verify their activities for the biosynthesis of IBC, by using tobacco transient expression with exogenous isoliquiritigenin as the substrate. Only SfFPT and HlPT1 could convert isoliquiritigenin to IBC, and the activity of SfFPT was higher than that of HlPT1. By co-expression of GmCHS8 and GmCHR5 from Glycine max, endogenous isoliquiritigenin was generated in tobacco leaves (21.0 μg/g dry weight). After transformation with a multigene vector carrying GmCHS8, GmCHR5, and SfFPT, de novo biosynthesis of IBC was achieved in transgenic tobacco T0 lines, in which the highest amount of IBC was 0.56 μg/g dry weight. The yield of IBC in transgenic plants was nearly equal to that in SfFPT transient expression experiments, in which substrate supplement was sufficient, indicating that low IBC yield was not attributed to the substrate supplement. Our research provided a prospect to produce valuable prenylflavonoids using plant-based metabolic engineering.</p
    corecore