378 research outputs found

    Continuous extremal optimization for Lennard-Jones Clusters

    Full text link
    In this paper, we explore a general-purpose heuristic algorithm for finding high-quality solutions to continuous optimization problems. The method, called continuous extremal optimization(CEO), can be considered as an extension of extremal optimization(EO) and is consisted of two components, one is with responsibility for global searching and the other is with responsibility for local searching. With only one adjustable parameter, the CEO's performance proves competitive with more elaborate stochastic optimization procedures. We demonstrate it on a well known continuous optimization problem: the Lennerd-Jones clusters optimization problem.Comment: 5 pages and 3 figure

    False-Name Manipulation in Weighted Voting Games is Hard for Probabilistic Polynomial Time

    Full text link
    False-name manipulation refers to the question of whether a player in a weighted voting game can increase her power by splitting into several players and distributing her weight among these false identities. Analogously to this splitting problem, the beneficial merging problem asks whether a coalition of players can increase their power in a weighted voting game by merging their weights. Aziz et al. [ABEP11] analyze the problem of whether merging or splitting players in weighted voting games is beneficial in terms of the Shapley-Shubik and the normalized Banzhaf index, and so do Rey and Rothe [RR10] for the probabilistic Banzhaf index. All these results provide merely NP-hardness lower bounds for these problems, leaving the question about their exact complexity open. For the Shapley--Shubik and the probabilistic Banzhaf index, we raise these lower bounds to hardness for PP, "probabilistic polynomial time", and provide matching upper bounds for beneficial merging and, whenever the number of false identities is fixed, also for beneficial splitting, thus resolving previous conjectures in the affirmative. It follows from our results that beneficial merging and splitting for these two power indices cannot be solved in NP, unless the polynomial hierarchy collapses, which is considered highly unlikely

    Nearly optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces

    Get PDF
    The \emph{Chow parameters} of a Boolean function f:{−1,1}n→{−1,1}f: \{-1,1\}^n \to \{-1,1\} are its n+1n+1 degree-0 and degree-1 Fourier coefficients. It has been known since 1961 (Chow, Tannenbaum) that the (exact values of the) Chow parameters of any linear threshold function ff uniquely specify ff within the space of all Boolean functions, but until recently (O'Donnell and Servedio) nothing was known about efficient algorithms for \emph{reconstructing} ff (exactly or approximately) from exact or approximate values of its Chow parameters. We refer to this reconstruction problem as the \emph{Chow Parameters Problem.} Our main result is a new algorithm for the Chow Parameters Problem which, given (sufficiently accurate approximations to) the Chow parameters of any linear threshold function ff, runs in time \tilde{O}(n^2)\cdot (1/\eps)^{O(\log^2(1/\eps))} and with high probability outputs a representation of an LTF fâ€Čf' that is \eps-close to ff. The only previous algorithm (O'Donnell and Servedio) had running time \poly(n) \cdot 2^{2^{\tilde{O}(1/\eps^2)}}. As a byproduct of our approach, we show that for any linear threshold function ff over {−1,1}n\{-1,1\}^n, there is a linear threshold function fâ€Čf' which is \eps-close to ff and has all weights that are integers at most \sqrt{n} \cdot (1/\eps)^{O(\log^2(1/\eps))}. This significantly improves the best previous result of Diakonikolas and Servedio which gave a \poly(n) \cdot 2^{\tilde{O}(1/\eps^{2/3})} weight bound, and is close to the known lower bound of max⁥{n,\max\{\sqrt{n}, (1/\eps)^{\Omega(\log \log (1/\eps))}\} (Goldberg, Servedio). Our techniques also yield improved algorithms for related problems in learning theory

    Public Benefits of Undeveloped Lands on Urban Outskirts: Non-Market Valuation Studies and their Role in Land Use Plans

    Get PDF
    Over the past three decades, the economics profession has developed methods for estimating the public benefits of green spaces, providing an opportunity to incorporate such information into land-use planning. While federal regulations routinely require such estimates for major regulations, the extent to which they are used in local land use plans is not clear. This paper reviews the literature on public values for lands on urban outskirts, not just to survey their methods or empirical findings, but to evaluate the role they have played--or have the potential to play-- in actual land use plans. Based on interviews with authors and representatives of funding agencies and local land trusts, it appears that academic work has had a mixed reception in the policy world. Reasons for this include a lack of interest in making academic work accessible to policy makers, emphasizing revealed preference methods which are inconsistent with policy priorities related to nonuse values, and emphasis on benefit-cost analyses. Nevertheless, there are examples of success stories that illustrate how such information can play a vital role in the design of conservation policies. Working Paper 07-2

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Application of Genetic Programming to High Energy Physics Event Selection

    Full text link
    We review genetic programming principles, their application to FOCUS data samples, and use the method to study the doubly Cabibbo suppressed decay D+ -> K+ pi+ pi- relative to its Cabibbo favored counterpart, D+ -> K- pi+ pi+. We find that this technique is able to improve upon more traditional analysis methods. To our knowledge, this is the first application of the genetic programming technique to High Energy Physics data.Comment: 39 page

    Am empirical comparison of the performance of classical power indices

    Get PDF
    Power indices are general measures of the relative voting power of individual members of a voting body. They are useful in helping understand and design voting bodies particularly those which employ weighted voting, in which different members having different numbers of votes. It is well known that in such bodies a member's voting power, in the sense of their capacity to affect the outcomes of votes called, rarely corresponds to the actual number of votes allocated to him. Many voting bodies for which this is an important consideration exist: examples include international organisations (notably the World Bank, the IMF, the European Union), the US presidential Electoral College and corporations in which votes are proportionate to stockholdings. Two classical power indices dominate the literature: the Shapley-Shubik index and the Banzhaf index (also known by other names). Both are based on the idea that a member's power depends on the relative number of times they can change a coalition from losing to winning by joining it and adding their vote. They may be defined in probabilistic terms as the probability of being able to swing the result of a vote, where all possible outcomes are taken as equiprobable. The indices differ however in the way they count voting coalitions. In probabilistic terms they use different coalition models and therefore differ in precisely what is meant by equiprobable outcomes. The indices have been used in a number of empirical applications but their relative performance has remained an open question for many years, a factor, which has hindered the wider acceptance of the approach. Where both the indices have been used for the same case, they have often given different results, sometimes substantially so, and theoretical studies of their properties have not been conclusive. There is therefore a need for comparative testing of their relative performance in practical contexts. Very little work of this type has been done however for a number of reasons: lack of independent indicators of power in actual voting bodies with which to compare them, difficulties in obtaining consistent data on a voting body over time with sufficient variation in the disposition of votes among members of actual legislatures and the lack of independent criteria against which the results of the indices may be judged. It has also been hampered to some extent by lack of easily available algorithms for computing the indices in large games. This paper assesses the indices against a set of reasonable criteria in terms of shareholder voting power and the control of the corporation in a large cross section of British companies. Each company is a separate voting body and there is much variation in the distribution of voting shares among them. Moreover reasonable criteria exist against which to judge the indices. New algorithms for the Shapley-Shubik and Banzhaf indices are applied to detailed data on beneficial ownership of 444 large UK companies without majority control. Because some of the data is missing, both finite and oceanic games of shareholder voting are studied to overcome this problem. The results, judged against these criteria, are unfavorable to the Shapley-Shubik index and suggest that the Banzhaf index much better reflects the variations in the power of shareholders between companies as the weights of shareholder blocks vary

    Income Taxes, Sorting, and the Costs of Housing: Evidence from Municipal Boundaries in Switzerland

    Get PDF
    This paper provides novel evidence on the role of income taxes for residential rents and spatial sorting. Drawing on comprehensive apartment-level data, we identify the effects of tax differentials across municipal boundaries in Switzerland. The boundary discontinuity design (BDD) corrects for unobservable location characteristics such as environmental amenities or the access to public goods and thereby reduces the estimated response of housing prices by one half compared to conventional estimates: we identify an income tax elasticity of rents of about 0.26. We complement this approach with census data on local sociodemographic characteristics and show that about one third of this effect can be traced back to a sorting of high-income households into low-tax municipalities. These findings are robust to a matching approach (MBDD) which compares identical residences on opposite sides of the boundary and a number of further sensitivity checks

    Overview of the PALM model system 6.0

    Get PDF
    In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Largeeddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue
    • 

    corecore