368 research outputs found

    Velocity-based training: Monitoring, implementation and effects on strength and power

    Get PDF
    Traditionally, resistance training has been prescribed using percent-based training (PBT) methods that use the loads relative to a maximal load lifted for one repetition (1RM). However, PBT does not take into account possible day-to-day fluctuations in performance that may occur from physical or psychological stressors. One approach to address this limitation is to monitor velocity changes during resistance training, based on research showing that declines in velocity are highly correlated with fatigue. Therefore, velocity-based training (VBT) methods are proposed to provide a more objective method to modify resistance training sessions based on individual differences in day-to-day performance and the rate of training adaptation. However, at the commencement of this dissertation in 2014, no previous research had examined VBT methods in comparison to PBT methods. Thus, this thesis aimed to verify the efficacy of different VBT methods using a resistance-trained population who could lift a minimum of 150% their own body mass for at least one repetition in the full-depth back squat. These parameters were chosen so that the findings of this research were applicable to strength-trained athletes who were likely to employ VBT methods in their resistance training programs. In the first of five research studies, two portable VBT devices were examined for their accuracy to assess peak velocity (PV) and mean velocity (MV) among other kinematic variables. On three separate days, ten strength-trained men performed three 1RM back squat trials that comprised loads of 20%, 40%, 60%, 80%, 90% and 100% of 1RM. Acceptable validity criteria was based on a Pearson moment correlation coefficient \u3e0.70, coefficient of variation (CV) ≀10% and Cohen d effect size (ES) r = 0.94 – 0.97, CV = 2.9 – 5.8%) and MV (r = 0.95 – 0.99, CV = 3.2 – 4.5%) across the relative load spectrum when compared to laboratory testing equipment. Thus, for the remainder of the VBT studies in this PhD thesis project, an LT was used to report the velocity data. In the second study, a novel velocity-based load monitoring method was investigated using 17 strength-trained men who performed three 1RM trials on separate days. Specifically, the reliability and validity of the load-velocity relationship to predict the back squat 1RM was calculated by entering MV at 100% 1RM into individualised linear regression equations which were derived from the load-velocity relationship of three (20%, 40%, 60% of 1RM), four (20%, 40%, 60%, 80% 1RM), or five (20%, 40%, 60%, 80%, 90% 1RM) incremental warm-up sets. The results showed that this predicted 1RM method was moderately reliable (ICC = 0.72 – 0.92, CV = 7.4 – 12.8%), and moderately valid (r = 0.78 – 0.93, CV = 5.7 – 12.2%). However, it could not be used as a VBT method to accurately modify training loads, since it significantly over-predicted the actual 1RM (SEE = 10.6 – 17.2 kg) due to the large variability of MV at 100% 1RM (ICC = 0.42, SEM = 0.05 m·s-1, CV = 22.5%). Therefore, this 1RM prediction method was no longer utilised as a method of adjusting training load for the remainder of the project. Despite its suggested importance, research had yet to investigate if velocity was stable between training sessions, so that individualised load-velocity profiles (LVP) could be created to track changes in velocity. Thus, the third study attempted to fill this research gap, where 18 strength-trained men performed three 1RM trials, which included warm-up loads pertaining to 20%, 40%, 60%, 80%, 90% and 100% 1RM, with the velocity of each repetition assessed by LT. It was found that PV, mean propulsive velocity (MPV) and MV were all reliable (ICC \u3e 0.70, CV ≀ 10%, ES \u3c 0.6) for the back squat performed at 20%, 40%, 60%, 80%, and 90% 1RM but not at 100% 1RM for MPV and MV. This meant that all three concentric velocity types could be used to develop LVPs. In addition, the smallest detectable difference was established across the relative load spectrum for PV (0.11 – 0.19 m·s-1), MPV (0.08 – 0.11 m·s-1) and MV (0.06 – 0.11 m·s-1), which then allows coaches to determine meaningful changes in velocity from their athletes between training sessions. Collectively, these results showed that LVPs could be utilised as a VBT method for monitoring sessional changes in velocity and modifying resistance-training loads according to individual differences in day-to-day performance. The fourth study compared the kinetic and kinematic data from three different VBT sessions and a PBT session in order to provide programmatic guidance to strength coaches who may choose to implement these novel methods to adjust resistance training load or volume. Fifteen strength-trained men performed four randomised resistance-training sessions 96 hours apart, which included a PBT session involving five sets of five repetitions at 80% 1RM, a LVP session (verified from Study 3) consisting of five sets of five repetitions with a load that could be adjusted to achieve a target velocity from an individualised LVP regression equation at 80% 1RM, a fixed sets 20% velocity loss threshold FSVL20 session that contained five sets at 80% of 1RM but sets were terminated once MV dropped below 20% of the maximal attainable MV from the first set or when five repetitions were completed, a variable sets 20% velocity loss threshold VSVL20 session that comprised 25 repetitions in total but participants performed as many repetitions in a set until the 20% velocity loss threshold was exceeded or 25 repetitions was completed. During the LVP and FSVL20 sessions, individuals performed repetitions with faster (p \u3c 0.05) sessional MV (ES = 0.81 – 1.05) and PV (ES = 0.98 – 1.12), avoided additional mechanical stress with less time under tension but maintained similar force and power outputs when compared to the PBT session. Therefore, the LVP and FSVL20 methods could be employed in a strength-oriented training phase to diminish fatigue-induced decreases in movement velocity that can occur in PBT. The VBT method employed in the fifth and final study was derived from the results of Study 4. Both the LVP and FSVL20 methods permitted faster repetition velocities throughout a training session compared to PBT, but it was decided that the FSVL20 method could decrease total training volume and reduce the training stimulus, which may be unwarranted. Therefore, in Study 5, the effects of the LVP-VBT approach (VBT) versus PBT on changes in strength, power and sports performance measures following six weeks of back squat training were examined. The study involved 24 strength-trained men who performed back squat training three times per week in a daily undulating format. The training protocols were matched for sets and repetitions but differed in the assigned training load. PBT group trained with relative loads varying from 59% – 85% 1RM, whereas the VBT group trained with loads that could be adjusted to achieve a target velocity from an individualised LVP that corresponded with 59% – 85% 1RM. Pre- and post-training assessments included 1RM, 30% of 1RM countermovement jump (CMJ), 20-m sprint, and 505 change of direction test (COD). Overall, the VBT group performed repetitions with faster velocities during training (p \u3c 0.05, MV = 0.76 m·s-1 vs. 0.66 m·s-1) that were perceived as less difficult (p \u3c 0.05, rating of perceived exertion = 5.1 vs. 6.0), and utilized marginally lower training loads (p \u3c 0.05, ~1.7%1RM) compared to PBT. Both VBT and PBT methods were effective for significantly enhancing 1RM (VBT: 11.3% vs. PBT: 12.5%), CMJ peak power (VBT: 7.4% vs. PBT: 6.0%), 20-m sprint (VBT: -1.9% vs. PBT: -0.9%), and COD (VBT: -5.4% vs. PBT: -3.6%). No significant differences were observed between groups for any testing assessment but likely favourable training effects were observed in 1RM for PBT group, whilst VBT group had likely favourable improvements in 5-m sprint time, and possibly favourable improvements in 10-m sprint time, and COD time. These findings suggest that both VBT and PBT methods are similarly effective; however, PBT may provide a slight 1RM strength advantage whilst VBT may be preferred by some individuals, since it permits faster training velocities, is perceived as less difficult, and is a more objective method for adjusting training load to account for individual differences in the rate of training adaptation. In conclusion, VBT (LVP approach) and PBT are similarly effective for promoting significant improvements in strength, power and sports performance tasks in strength-trained participants. However, even though the LVP-based VBT method did not provide significant increases in strength and power adaptations compared to PBT, it provided similar improvements while avoiding additional mechanical loading which may be important for the better management of training load, particularly with athletes who partake in numerous training modalities which can influence fatigue and recovery. That being said, if all repetitions are performed with maximal intended velocity but not to concentric muscular failure, a well-planned, periodised resistance training program with regular training frequency and progressive overload that accounts for bouts of recovery will provide adequate stimulus to significantly enhance strength, power and performance tasks like sprinting and changes in direction. Future training studies may look to examine the efficacy of VBT methods using multiple exercises (upper and lower body), and with different populations including women, adolescents, older adults, and potentially individuals during rehabilitation from injury so that training progress can be objectively monitored. Furthermore, future studies could look to incorporate multiple VBT methods into a training program such as the LVP method to modify resistance training load and the velocity loss thresholds method to control resistance training volume

    Comparison of velocity-based and traditional 1RM-percent-based prescription on acute kinetic and kinematic variables

    Get PDF
    Purpose: This study compared kinetic and kinematic data from three different velocity-based training (VBT) sessions and a 1-repetition maximum (1RM) percent-based training (PBT) session using full-depth, free-weight back squats with maximal concentric effort. Methods: Fifteen strength-trained men performed four randomized resistance-training sessions 96-hours apart: PBT session involved five sets of five repetitions using 80%1RM; load-velocity profile (LVP) session contained five sets of five repetitions with a load that could be adjusted to achieve a target velocity established from an individualized LVP equation at 80%1RM; fixed sets 20% velocity loss threshold (FSVL20) session that consisted of five sets at 80%1RM but sets were terminated once the mean velocity (MV) dropped below 20% of the threshold velocity or when five repetitions were completed per set; variable sets 20% velocity loss threshold (VSVL20) session comprised 25-repetitions in total, but participants performed as many repetitions in a set as possible until the 20% velocity loss threshold was exceeded. Results: When averaged across all repetitions, MV and peak velocity (PV) were significantly (p<0.05) faster during the LVP (MV: ES=1.05; PV: ES=1.12) and FSVL20 (MV: ES=0.81; PV: ES=0.98) sessions compared to PBT. Mean time under tension (TUT) and concentric TUT were significantly less during the LVP session compared to PBT. FSVL20 session had significantly less repetitions, total TUT and concentric TUT than PBT. No significant differences were found for all other measurements between any of the sessions. Conclusions: VBT permits faster velocities, avoids additional unnecessary mechanical stress but maintains similar measures of force and power output compared to strength-oriented PBT

    Readiness to train: Return to baseline strength and velocity following strength or power training

    Get PDF
    This study investigated the return to baseline of movement velocity and maximal strength following a strength-orientated session and power-orientated session in the free-weight back-squat performed with maximal concentric velocity. Fourteen strength-trained males completed a strength-orientated session (five sets of five repetitions @80% of a one-repetition maximum) and a power-orientated session (three sets of six repetitions @50% one-repetition maximum ) in a randomised order over two weeks (e.g. strength week 1, power week 2). The back-squat was then performed with loads of 20%, 40%, 60%, 80%, 90% and 100% one-repetition maximum at 24, 48, 72 and 96 h following the strength and power exercise sessions to assess return to baseline of squat velocity and maximal strength. Dependent variables included one-repetition maximum, back-squat mean velocity and peak velocity and countermovement jump peak velocity. Meaningful changes ((effect size) ≄ −0.60) were reported for mean velocity and peak velocity at loads ≄ 60% one-repetition maximum at 24 and 48 h after the strength-orientated session. Trivial to small (effect size ≀ −0.59) differences were reported for squat velocities following the power-orientated session. Only trivial to small effect size differences were observed for countermovement jump peak velocity and one-repetition maximum at all time points following both sessions. Squat velocity (mean velocity and peak velocity) across the load–velocity profile had recovered at 72 h following the strength-orientated session. However, the return to baseline of squat velocity (mean velocity and peak velocity) did not coincide with the return to baseline of one-repetition maximum or countermovement jump peak velocity. Therefore, measuring and monitoring meaningful changes in velocity may be a more valid and practical alternative in determining full recovery and readiness to train

    The impact of broadband in schools

    Get PDF
    The report reviews evidence for the impact of broadband in English schools, exploring; Variations in provision in level of broadband connectivity; Links between the level of broadband activity and nationally accessible performance data; Aspects of broadband connectivity and the school environment that contribute to better outcomes for pupils and teachers; Academic and motivational benefits associated with educational uses of this technology

    Sprint acceleration characteristics across the Australian football participation pathway

    Get PDF
    The aim of this study was to compare the force, velocity and power profiles of a maximal sprint acceleration through different competition levels of the Australian Football (AF) participation pathway. One hundred and sixty-two junior AF athletes across five competition levels including State under 18’s (ST 18), State under 16’s (ST 16), local under 18’s (LOC 18), local under 15’s (LOC 15), and local under 14’s (LOC 14) participated in this cross-sectional study. Velocity-time data from maximal sprint accelerations were analysed to derive athlete’s sprint acceleration characteristics and split times. ST 18 showed a more force-orientated profile than the LOC 18 with moderate differences in relative theoretical maximal force (F0) (7.54%), absolute F0 (10.51%), and slope of the force–velocity relationship (Sf-v) (9.27%). Similarly, small differences were found between ST 18 and ST 16 in relative F0 (4.79%) and Sf-v (6.28%). Moderate to extremely large differences were observed between players competing in older (ST 18, LOC 18, ST 16) compared to younger (LOC 15, LOC 14) competition levels highlighting the potential influence of biological maturation. It is recommended that practitioners working with junior AF players to consider developing a force-orientated sprint acceleration profile to improve sprinting performance

    Sprint acceleration force-velocity-power characteristics in drafted vs non-drafted junior Australian football players: Preliminary results

    Get PDF
    This investigation aimed to compare the maximal sprint acceleration profiles of drafted and non-drafted elite junior Australian football (AF) players. Nineteen players (10 drafted and 9 non-drafted) from an elite junior AF state team participated in this study. Instantaneous velocity was measured via radar gun during maximal 30 m sprints. The velocity-time data were analysed to derive individual force-velocity-power characteristics and sprint times. No significant differences existed between groups, however drafted players reached moderately faster maximum velocity (Hedges’ g = 0.70 [-0.08; 1.48] and theoretical maximum velocity (g = 0.65 [-0.13; 1.42]) than non-drafted players indicating a superior ability to apply higher amounts of force at increasing sprinting velocity. Further, drafted players produced moderately higher absolute theoretical maximum force (g = 0.72 [-0.06; 1.50]) and absolute maximum power (g = 0.83 [0.04; 1.62]) which reflects their moderately higher body mass (g = 0.61[-0.16;1.38]). Although not significant, in this sample of elite junior AF players, those drafted into the AFL displayed greater absolute sprint acceleration characteristics and maximal velocity capabilities than their non-drafted counterparts (moderate effect size). Whether force-velocity-power characteristics can be more beneficial in differentiating sprint performance of elite junior Australian footballers compared to the traditional sprint time approach warrants further investigation with a larger sample size

    A COMPARISON BETWEEN PLOT AND POINT SAMPLING USING A COMPUTER BASED TREE POPULATION OF Pinus caribaea SRI LANKA

    Get PDF
    Research was conducted in the University Forest at Yagirala Forest Reserve, KalutaraDistrict, Sri Lanka, to compare the efficiency of point and plot sampling in Pinus caribaeaplantation using computer simulated sampling on a population of trees using data collectedin the field. In all, 3294 trees on 5.4 hectares constitute the population. The data base hasbeen filed with tree number, dbh, X and Y co-ordinates. Edge effect bias was minimizedusing the reflection method.Random sampling was used in all cases for sample sizes n = 10, 20, 30, 60 and 100. Inorder to make meaningful comparisons, the concept of equivalent plot was used whichaimed at obtaining equal tallies per sampling unit for point and plot sampling. Basal areafactors applied were 2, 4, 9 and 16. Efficiency for given point - plot equivalents werebased on standard error % and cost values (where cost was based on time). In 19 of the 20point-plot combinations studied, point sampling was found to be the more efficient. Themost suitable BAF is BAF2 and it is recommended that point sampling be applied inplantation forest inventories in Sri Lanka where trained staff are available.

    Changing Attitudes About Being a Bystander to Violence: Translating an In-Person Sexual Violence Prevention Program to a New Campus

    Get PDF
    Bystander approaches to reducing sexual violence train community members in prosocial roles to interrupt situations with risk of sexual violence and be supportive community allies after an assault. This study employs a true experimental design to evaluate the effectiveness of Bringing in the Bystanderℱ through 1-year post-implementation with first-year students from two universities (one rural, primarily residential; one urban, heavily commuter). We found significant change in bystander attitudes for male and female student program participants compared with the control group on both campuses, although the pattern of change depended on the combination of gender and campus

    Changing Attitudes About Being a Bystander to Violence: Translating an In-Person Sexual Violence Prevention Program to a New Campus

    Get PDF
    Bystander approaches to reducing sexual violence train community members in prosocial roles to interrupt situations with risk of sexual violence and be supportive community allies after an assault. This study employs a true experimental design to evaluate the effectiveness of Bringing in the Bystanderℱ through 1-year post-implementation with first-year students from two universities (one rural, primarily residential; one urban, heavily commuter). We found significant change in bystander attitudes for male and female student program participants compared with the control group on both campuses, although the pattern of change depended on the combination of gender and campus

    Women, know your limits: Cultural sexism in academia

    Get PDF
    Despite the considerable advances of the feminist movement across Western societies, in Universities women are less likely to be promoted, or paid as much as their male colleagues, or even get jobs in the first place. One way in which we can start to reflect on why this might be the case is through hearing the experiences of women academics themselves. Using feminist methodology, this article attempts to unpack and explore just some examples of ‘cultural sexism’ which characterise the working lives of many women in British academia.This article uses qualitative methods to describe and make sense of just some of those experiences. In so doing, the argument is also made that the activity of academia is profoundly gendered and this explicit acknowledgement may contribute to our understanding of the under-representation of women in senior positions
    • 

    corecore