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ABSTRACT 

Traditionally, resistance training has been prescribed using percent-based training (PBT) 

methods that use the loads relative to a maximal load lifted for one repetition (1RM). However, 

PBT does not take into account possible day-to-day fluctuations in performance that may occur 

from physical or psychological stressors. One approach to address this limitation is to monitor 

velocity changes during resistance training, based on research showing that declines in velocity 

are highly correlated with fatigue. Therefore, velocity-based training (VBT) methods are proposed 

to provide a more objective method to modify resistance training sessions based on individual 

differences in day-to-day performance and the rate of training adaptation. However, at the 

commencement of this dissertation in 2014, no previous research had examined VBT methods in 

comparison to PBT methods. Thus, this thesis aimed to verify the efficacy of different VBT 

methods using a resistance-trained population who could lift a minimum of 150% their own body 

mass for at least one repetition in the full-depth back squat. These parameters were chosen so that 

the findings of this research were applicable to strength-trained athletes who were likely to employ 

VBT methods in their resistance training programs.  

In the first of five research studies, two portable VBT devices were examined for their 

accuracy to assess peak velocity (PV) and mean velocity (MV) among other kinematic variables. 

On three separate days, ten strength-trained men performed three 1RM back squat trials that 

comprised loads of 20%, 40%, 60%, 80%, 90% and 100% of 1RM. Acceptable validity criteria 

was based on a Pearson moment correlation coefficient >0.70, coefficient of variation (CV) ≤10% 

and Cohen d effect size (ES) <0.60. The results showed that the inertial sensor device (PUSH™) 

was not highly accurate according to the validity criteria for determining PV or MV across all six 

relative intensities examined. However, a linear transducer ([LT] GymAware™) was highly 

accurate for measuring both PV (r = 0.94 – 0.97, CV = 2.9 – 5.8%) and MV (r = 0.95 – 0.99, CV 

= 3.2 – 4.5%) across the relative load spectrum when compared to laboratory testing equipment. 

Thus, for the remainder of the VBT studies in this PhD thesis project, an LT was used to report 

the velocity data. 

In the second study, a novel velocity-based load monitoring method was investigated using 

17 strength-trained men who performed three 1RM trials on separate days. Specifically, the 

reliability and validity of the load-velocity relationship to predict the back squat 1RM was 

calculated by entering MV at 100% 1RM into individualised linear regression equations which 

were derived from the load-velocity relationship of three (20%, 40%, 60% of 1RM), four (20%, 

40%, 60%, 80% 1RM), or five (20%, 40%, 60%, 80%, 90% 1RM) incremental warm-up sets. The 
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results showed that this predicted 1RM method was moderately reliable (ICC = 0.72 – 0.92, CV = 

7.4 – 12.8%), and moderately valid (r = 0.78 – 0.93, CV = 5.7 – 12.2%). However, it could not be 

used as a VBT method to accurately modify training loads, since it significantly over-predicted 

the actual 1RM (SEE = 10.6 – 17.2 kg) due to the large variability of MV at 100% 1RM (ICC = 

0.42, SEM = 0.05 m·s-1, CV = 22.5%). Therefore, this 1RM prediction method was no longer 

utilised as a method of adjusting training load for the remainder of the project. 

Despite its suggested importance, research had yet to investigate if velocity was stable 

between training sessions, so that individualised load-velocity profiles (LVP) could be created to 

track changes in velocity. Thus, the third study attempted to fill this research gap, where 18 

strength-trained men performed three 1RM trials, which included warm-up loads pertaining to 

20%, 40%, 60%, 80%, 90% and 100% 1RM, with the velocity of each repetition assessed by LT. 

It was found that PV, mean propulsive velocity (MPV) and MV were all reliable (ICC > 0.70, CV 

≤ 10%, ES < 0.6) for the back squat performed at 20%, 40%, 60%, 80%, and 90% 1RM but not at 

100% 1RM for MPV and MV. This meant that all three concentric velocity types could be used to 

develop LVPs. In addition, the smallest detectable difference was established across the relative 

load spectrum for PV (0.11 – 0.19 m·s-1), MPV (0.08 – 0.11 m·s-1) and MV (0.06 – 0.11 m·s-1), 

which then allows coaches to determine meaningful changes in velocity from their athletes 

between training sessions. Collectively, these results showed that LVPs could be utilised as a VBT 

method for monitoring sessional changes in velocity and modifying resistance-training loads 

according to individual differences in day-to-day performance.   

The fourth study compared the kinetic and kinematic data from three different VBT sessions 

and a PBT session in order to provide programmatic guidance to strength coaches who may choose 

to implement these novel methods to adjust resistance training load or volume. Fifteen strength-

trained men performed four randomised resistance-training sessions 96 hours apart, which 

included a PBT session involving five sets of five repetitions at 80% 1RM, a LVP session (verified 

from Study 3) consisting of five sets of five repetitions with a load that could be adjusted to achieve 

a target velocity from an individualised LVP regression equation at 80% 1RM, a fixed sets 20% 

velocity loss threshold FSVL20 session that contained five sets at 80% of 1RM but sets were 

terminated once MV dropped below 20% of the maximal attainable MV from the first set or when 

five repetitions were completed, a variable sets 20% velocity loss threshold VSVL20 session that 

comprised 25 repetitions in total but participants performed as many repetitions in a set until the 

20% velocity loss threshold was exceeded or 25 repetitions was completed. During the LVP and 

FSVL20 sessions, individuals performed repetitions with faster (p < 0.05) sessional MV (ES = 0.81 
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– 1.05) and PV (ES = 0.98 – 1.12), avoided additional mechanical stress with less time under 

tension but maintained similar force and power outputs when compared to the PBT session. 

Therefore, the LVP and FSVL20 methods could be employed in a strength-oriented training phase 

to diminish fatigue-induced decreases in movement velocity that can occur in PBT.  

The VBT method employed in the fifth and final study was derived from the results of Study 

4. Both the LVP and FSVL20 methods permitted faster repetition velocities throughout a training 

session compared to PBT, but it was decided that the FSVL20 method could decrease total training 

volume and reduce the training stimulus, which may be unwarranted. Therefore, in Study 5, the 

effects of the LVP-VBT approach (VBT) versus PBT on changes in strength, power and sports 

performance measures following six weeks of back squat training were examined. The study 

involved 24 strength-trained men who performed back squat training three times per week in a 

daily undulating format. The training protocols were matched for sets and repetitions but differed 

in the assigned training load. PBT group trained with relative loads varying from 59% – 85% 1RM, 

whereas the VBT group trained with loads that could be adjusted to achieve a target velocity from 

an individualised LVP that corresponded with 59% – 85% 1RM. Pre- and post-training 

assessments included 1RM, 30% of 1RM countermovement jump (CMJ), 20-m sprint, and 505 

change of direction test (COD). Overall, the VBT group performed repetitions with faster 

velocities during training (p < 0.05, MV = 0.76 m·s-1 vs. 0.66 m·s-1) that were perceived as less 

difficult (p < 0.05, rating of perceived exertion = 5.1 vs. 6.0), and utilized marginally lower training 

loads (p < 0.05, ~1.7%1RM) compared to PBT. Both VBT and PBT methods were effective for 

significantly enhancing 1RM (VBT: 11.3% vs. PBT: 12.5%), CMJ peak power (VBT: 7.4% vs. 

PBT: 6.0%), 20-m sprint (VBT: -1.9% vs. PBT: -0.9%), and COD (VBT: -5.4% vs. PBT: -3.6%). 

No significant differences were observed between groups for any testing assessment but likely 

favourable training effects were observed in 1RM for PBT group, whilst VBT group had likely 

favourable improvements in 5-m sprint time, and possibly favourable improvements in 10-m sprint 

time, and COD time. These findings suggest that both VBT and PBT methods are similarly 

effective; however, PBT may provide a slight 1RM strength advantage whilst VBT may be 

preferred by some individuals, since it permits faster training velocities, is perceived as less 

difficult, and is a more objective method for adjusting training load to account for individual 

differences in the rate of training adaptation. 

In conclusion, VBT (LVP approach) and PBT are similarly effective for promoting 

significant improvements in strength, power and sports performance tasks in strength-trained 

participants. However, even though the LVP-based VBT method did not provide significant 



ix 

 

increases in strength and power adaptations compared to PBT, it provided similar improvements 

while avoiding additional mechanical loading which may be important for the better management 

of training load, particularly with athletes who partake in numerous training modalities which can 

influence fatigue and recovery. That being said, if all repetitions are performed with maximal 

intended velocity but not to concentric muscular failure, a well planned, periodized resistance 

training program with regular training frequency and progressive overload that accounts for bouts 

of recovery will provide adequate stimulus to significantly enhance strength, power and 

performance tasks like sprinting and changes in direction. Future training studies may look to 

examine the efficacy of VBT methods using multiple exercises (upper and lower body), and with 

different populations including women, adolescents, older adults, and potentially individuals 

during rehabilitation from injury so that training progress can be objectively monitored. 

Furthermore, future studies could look to incorporate multiple VBT methods into a training 

program such as the LVP method to modify resistance training load and the velocity loss 

thresholds method to control resistance training volume. 
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CHAPTER 1 

INTRODUCTION 

BACKGROUND 

Resistance training has been shown to attenuate the risk of injury and improve athletic 

performance [1-3]. Specifically, increasing maximal strength and power can translate to 

improvements in markers of performance such as running, jumping and change of direction [4-6]. 

In order to optimise strength and power development, strength and conditioning coaches can 

manipulate factors such as the type, order, volume, intensity (velocity) and load of exercise, as 

well as the rest periods between sets and exercises. Of these aforementioned factors, training 

velocity and training load are highly influential for augmenting strength and power adaptations 

[7]. One training load prescription method known as repetition maximum (RM) training requires 

a maximum number of repetitions (10RM, 5RM etc.) to be lifted in each exercise set that may be 

completed to concentric muscular failure [8]. However, training to concentric muscular failure can 

induce excessive fatigue and diminish the force generating capacity in subsequent sets leading to 

lower gains in strength and power adaptations over time [9-11], particularly in resistance-trained 

athletes [12, 13]. In addition to these findings, research has also shown that performing all 

repetitions with maximal concentric velocity can result in significant enhancement of both strength 

and power compared to training to failure [13, 14]. Thus, to maximise gains in strength and power, 

it may be advised that athletes lift with maximal concentric velocity but not to maximal concentric 

muscular failure. 

Due to the limitations of RM training, it is more commonplace for athletes to train with loads 

prescribed as a percentage of a 1-repetition maximum (1RM), known as percent-based training 

(PBT). This method is quite simple, and allows strength and conditioning coaches to periodise 

resistance training sessions to accommodate for recovery and improve physical abilities critical to 

sports performance [15]. However, even though programming from PBT is practical and can be 

managed with relative ease when training a large team of athletes, it does not account for day-to-

day fluctuations in maximal strength or performance that can occur due to training induced fatigue 

[16], or elevated psychological stress levels [17], among others factors. Therefore, more precise 

objective methods to monitor and prescribe individualised sessional training loads may be of 

particular interest to strength and conditioning professionals. 
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Performing resistance training with maximal attainable concentric velocities gives rise to 

another alternative to conventional PBT methods: velocity-based training (VBT). Importantly, 

performing repetitions with maximal intended velocity can provide greater neuromuscular stimuli 

and increases in training adaptation (maximal strength and power) compared to training to failure 

[13], or with deliberately slower velocity repetitions [14]. However, if an exercise is performed 

with maximal voluntary effort, the velocity of the movement will decline within a set as fatigue 

ensues [18]. Furthermore, continued training with significant declines in repetition velocity can 

induce excessive fatigue that is detrimental to power output [19]. By monitoring velocity and 

providing immediate repetition feedback, coaches can make objective training based decisions 

limiting the number of slower velocity repetitions performed with sub-optimal velocity and power 

outputs. This is pertinent for athletes whose training goal is primarily focused on increased 

activation and firing frequency of type II muscle fibres which contribute to enhancing the rate of 

force development (RFD) that can lead to increases in strength and power development [20, 21]. 

Therefore, VBT allows a coach to objectively modify a resistance training session if required [13, 

22].  

At the start of this doctoral work in 2014, a major limitation of VBT was the availability of 

affordable technology that could accurately measure velocity. As a consequence, new and less 

expensive devices were developed but their accuracy remained uncertain. For example, a relatively 

inexpensive, wearable inertial sensor (PUSH band, PUSH Inc., Toronto, Canada) was developed 

to assess velocity, force and power in a myriad of resistance training exercises. It was suggested 

that this device was highly accurate but studies to verify these claims were required. Since training 

load and training volume adjustments using VBT are based on minor yet significant changes in 

velocity, it was, and still is, important to discern the accuracy of data collected from such devices 

across a variety of loads and exercises.     

One use of VBT is to predict 1RM from the velocities of sets performed with submaximal 

loads [23]. The 1RM assessment is a well-established reliable method for determining maximal 

strength [24]. However, maximal strength can fluctuate due to fatigue or training adaptation [22]. 

Furthermore, 1RM assessments are time consuming and it is not always desirable for athletes to 

lift with maximal loads throughout a training season. Therefore, 1RM prediction methods 

performed with submaximal loads were desired. Due to the almost perfect correlation and linearity 

of the load-velocity relationship, it was thought possible for sessional 1RM predictions to be made 

by extrapolating the load (100%1RM) from the intersection of the velocity at 1RM (V1RM) using 

the individual’s load-velocity profile (LVP) regression line [22]. Theoretically, if 1RM predictions 
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were precise then the velocities performed during the warm-up sets of a training session could be 

used to calculate and monitor day-to-day variation in maximal strength. As a consequence, training 

load could be modified to account for individual rates of recovery and adaptation. Importantly, for 

this method to be able to predict changes in maximal strength when athletes are fatigued, it was 

crucial to establish whether 1RM predictions are stable in non-fatigued conditions. Such a finding 

would be of great interest to strength coaches who have to routinely track their athlete’s changes 

in maximal strength throughout a season by having them perform 1RM assessments, which can 

take valuable time away from training.  

A previously unexplored VBT approach was the monitoring of velocity between training 

sessions to modify training load. The inverse linear relationship between load and velocity shows 

that if maximal concentric effort is provided, lighter loads can be lifted with faster velocities than 

heavier loads [23]. Furthermore, when maximal concentric effort is given within a training set, the 

velocity will eventually decline when neuromuscular fatigue develops [18]. A characteristic of 

VBT was the apparent stability of velocity between training sessions. However, evidence to 

support this assertion was lacking in 2014. If velocity was found to be reliable across the relative 

load spectrum then an individualised LVP could be established to create velocity targets. This 

would then allow an individual to monitor the velocity of their warm-up repetitions (submaximal 

loads) and track their performance or readiness to train against the velocity targets. This is thought 

to be practically useful since it is hypothesized that any meaningful increase or decrease in velocity 

between training sessions compared to a baseline LVP will reflect an increase or decrease in 

strength resultant from training adaptation or residual fatigue. Therefore, this VBT method could 

be useful for objective training load prescription based on the sessional velocity performance of 

an individual and their readiness to train. However, for the LVP approach of VBT to be employed 

as a training method, the reliability of velocity between sessions needed to be investigated so that 

meaningful changes in velocity could be established.  

Another approach to VBT is the use of velocity loss thresholds to modify training volume 

prescription (number of repetitions per set). This particular VBT method dictates that a set can be 

terminated when repetitions are not performed above a certain velocity which is normally 

determined as a percentage of the fastest repetition in the first set of a training session [21]. Padulo 

et al. [13] implemented a 20% velocity loss threshold and showed that maintaining at least 80% 

of MV during training results in greater increases in Smith machine bench press 1RM compared 

to sets performed to failure. Similarly, Pareja-Blanco et al. [20] also showed that using a 20% 

velocity loss threshold for the Smith machine back squat resulted in similar increases in predicted 
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1RM strength but greater increases in power output compared to a 40% velocity loss threshold. In 

2014, all of the VBT studies had been performed on a Smith machine. Although these studies have 

merit and provided the basis of VBT research, no studies had investigated VBT methods in large 

mass free-weight exercises that require movements in both the vertical and horizontal planes, 

movements that are extensively utilised in practice.  

At the commencement of this thesis project in the beginning of 2014, it was known that VBT 

methods could provide greater neuromuscular stimuli and increase training adaptations compared 

to training to failure [13]. However, it was not known whether VBT methods would elicit greater 

long-term adaptations to strength and power compared to more traditional PBT methods. It was 

conceivable that VBT may be more beneficial than PBT since it provides a more objective method 

for adjusting resistance-training sessions to account for individual differences in the rate of training 

adaptation. Additionally, even though long-term adaptations in strength and power may occur 

from VBT, the magnitude of velocity decline within a single session was unclear using different 

VBT methods. Thus, investigating the acute decline in kinetic and kinematic variables following 

a VBT session was required in order to provide programmatic guidance to strength coaches who 

may choose to implement these novel methods to adjust resistance training load or volume. 

 

CENTRAL AIM 

The central aim of this thesis was to investigate the efficacy of using velocity as an objective 

method for adjusting training load to account for individual differences in the rate of training 

adaptation, and determine whether VBT methods are more favourable for enhancing strength and 

power compared to more traditional PBT methods in male, strength-trained participants.  

 

CENTRAL HYPOTHESIS 

It was hypothesised that VBT would accurately monitor recovery within a training session 

based on the velocity of repetitions performed within the warm-up, and when applied in a training 

study, VBT would result in greater adaptations to strength and power compared to PBT. 

The present thesis project consisted of five studies (Study 1 – Study 5), and the aim and 

hypothesis of each study are shown below. 
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Specific Aim of Study 1 (Chapter 3): To investigate the ability of two field-based devices to 

accurately measure velocity, force and power in the back squat exercise compared with laboratory 

based equipment. 

Hypothesis: It was hypothesized that both the accelerometer and LT device would accurately 

measure all of the kinetic and kinematic data through the relative load spectrum, and either device 

could be used for VBT. 

 

Specific Aim of Study 2 (Chapter 4): To determine the reliability and validity of the load-velocity 

relationship to predict the back squat 1RM. 

Hypothesis: It was hypothesized that the load-velocity relationship would be highly reliable and 

valid for 1RM predictions, and could be used as a method to modify training load for VBT. 

 

Specific Aim of Study 3 (Chapter 5): To examine the reliability of PV, MPV and MV in the 

development of LVPs. 

Hypothesis: It was hypothesized that all three concentric velocities would be reliable, and could 

be used to develop LVPs, which in turn could be used to objectively modify training load 

prescription based on the sessional velocity performance of an individual. 

 

Specific Aim of Study 4 (Chapter 6): To compare the kinetic and kinematic data from a PBT 

session and three different VBT sessions. 

Hypothesis: It was hypothesized that all three VBT sessions would permit faster average session 

velocities and power output than a PBT session. 

 

Specific Aim of Study 5 (Chapter 7): To compare the changes in strength and power between 

VBT and PBT groups. 

Hypothesis: It was hypothesized that VBT group would result in more favourable adaptations to 

strength and power compared to PBT group. 
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THESIS OVERVIEW 

This thesis consists of eight chapters. Chapter 2 reviews the key literature surrounding VBT 

including the main velocity measuring technology, sessional 1RM prediction methods, and the 

current applied VBT methods. Chapter 3 presents the results of two field-based devices to 

accurately measure velocity, force and power, which has been accepted for publication in the 

International Journal of Sports Physiology and Performance. Chapter 4 presents the findings of 

the reliability and validity of the load-velocity relationship to predict the back squat 1RM which 

was accepted for publication in the Journal of Strength and Conditioning Research. The reliability 

of PV, MPV and MV is discussed in Chapter 5, which was accepted for publication in the 

International Journal of Sports Physiology and Performance. Chapter 6 presents the kinetic and 

kinematic data from PBT and different VBT sessions which has recently been accepted for 

publication in the International Journal of Sports Physiology and Performance. Chapter 7 presents 

the findings of the training study between VBT and PBT groups. Last, a general summary and 

limitations is presented in Chapter 8 which also contains recommendations for future research.  
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CHAPTER 2 

REVIEW OF THE LITERATURE 

CHAPTER OVERVIEW 

This chapter briefly introduces VBT with particular focus directed at its use in maximising 

strength and power adaptations, which is then followed by five main sections. Firstly, this review 

will discuss the advantages and limitations of different velocity measuring devices. Section two 

describes the accuracy of numerous 1RM prediction methods and their limitations for sessional 

modification of training load. The third section will discuss the paucity of research examining the 

stability of velocity and which velocity measures can be used to accurately evaluate and monitor 

training. LVPs will then be discussed in section four with specific mention to the exercises that 

have been investigated, the use of LVPs in monitoring an individual’s readiness to train, and the 

ability of LVPs to track changes in strength. Finally, section five will outline the literature related 

to the current implementation and interpretation strategies of VBT methods, more specifically 

related to enhancing maximal strength and power through the use of velocity loss thresholds. 

  

 INTRODUCTION 

Traditional PBT involves the prescription of relative submaximal loads from a one-repetition 

maximum (1RM) assessment. Even though PBT provides a practical means to prescribe relative 

loads and training volume, maximal strength (i.e. 1RM load) can increase by 10% within a few 

weeks due to training adaptation [13]. Moreover, prescribing training load from pre-determined 

1RM loads does not account for daily fluctuations in maximal strength, which can be attributed to 

physical and psychological stressors [25]. As a result, continued training with prescribed lifting 

loads from an out-dated 1RM may not optimise the neuromuscular stimuli required to maximise 

adaptation and may also be inappropriate for training individuals on a daily basis whose 

performance can fluctuate from residual fatigue. Therefore, alternative methods for prescribing 

resistance training have been established. 

Due to commercially available kinetic and kinematic technology, researchers have 

investigated the use of immediate feedback using VBT methods to objectively manipulate 

resistance-training volume within a training session [20, 26]. Research has established four distinct 

benefits of monitoring velocity in training. Firstly, movement velocity is critical to training 
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intensity, such that if maximal effort is provided throughout the concentric phase of a lift, there 

will be greater force production [27, 28] and recruitment of Type II muscle fibres [29] compared 

to self-selected [13] or deliberately slower concentric muscle actions [14], which increases the 

neuromuscular stimuli associated with strength and power development [13]. Secondly, the onset 

of fatigue becomes apparent if an exercise is performed with maximal concentric effort and the 

repetition velocity declines within a set [18, 30]. Thirdly, due to the apparent stability of movement 

velocity at any relative load [31], any fluctuations in velocity beyond the normal variation 

observed between training sessions is likely to reflect fatigue or gains in strength. Fourth, 

immediate velocity biofeedback to the users can enhance performance output so that individuals 

can attempt to “beat” a previous repetition or sets velocity value. For these reasons, monitoring 

velocity in strength training sessions to manipulate relative loads and training volume has 

increased in popularity.   

Manufacturers have developed velocity measurement devices to accurately assess eccentric 

and concentric velocities. Specifically, VBT is often centred on one of three different methods to 

quantify concentric velocity including peak velocity (PV), mean velocity (MV) and mean 

propulsive velocity (MPV). PV is determined as the maximum value collected during the 

concentric phase of a repetition and is a pertinent measure for explosive exercises whereas MV is 

calculated as the average velocity during the entire concentric action. MV is typically monitored 

through the entire phase of non-aerial exercises/movements (i.e. a part of the body remains in 

contact with the ground, machine, or other resistive device), but since there can be a large 

deceleration phase with light and medium loads, MV is thought to underestimate an individual’s 

true neuromuscular potential for some exercises [32]. As a result, many research papers monitoring 

velocity will measure and report MPV, which is the average of the concentric phase when 

acceleration is greater than 0 m·s-2. Importantly, MPV measures the “propulsive” phase of a 

repetition, which is thought to better represent the true neuromuscular potential of an individual 

compared to MV [32].  

The foundation of VBT is the inverse linear relationship that exists between load and 

velocity, meaning that heavier loads cannot be lifted with the same concentric velocity as lighter 

loads if an individual provides maximal concentric effort. The current body of scientific literature 

suggests that all repetitions performed during a maximal strength-oriented training phase should 

be performed at maximal concentric velocity but not to concentric muscular failure if the goal is 

to enhance strength and power, regardless of training load [12, 13]. However, there may be some 

value in a hypertrophy block pushing closer to failure, sequenced prior to a maximal strength-
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oriented training phase that is further from failure, which in the context of a long term periodised 

plan could conceivably aid strength gains over time. Recent studies have examined different VBT 

methods in resistance training sessions in an attempt to modify training load or volume and account 

for day-to-day fluctuations in performance [20, 26, 33]. These VBT methods include i) using 

velocity to predict 1RM; ii) creating an individualised LVP; and iii) implementing velocity loss 

thresholds. The objective of this review is to discuss: the current literature surrounding the 

aforementioned VBT methods; how these methods have been applied to modify resistance training 

and optimise strength and power adaptation; and examine the limitations which guide the direction 

of this thesis. 

 

DEVICES MEASURING VELOCITY  

Motion Analysis 

In resistance training, linear transducers (LT), accelerometer-based devices, three-

dimensional (3D) and two-dimensional (2D) motion analysis systems can be used to assess 

velocity. 3D and 2D motion analysis systems calculate velocity by measuring the distance an 

object has moved with respect to time. Even though 3D motion analysis systems are often used as 

the gold standard criterion measurement to assess barbell velocity, the analysis required to extract 

the data from 3D motion analysis systems have been labour intensive and unable to provide 

instantaneous repetition feedback. Importantly, when an individual employs VBT, immediate 

feedback for each repetition is required to make training decisions. Therefore, using 3D motion 

analysis systems as a practical tool to monitor velocity and provide instantaneous feedback for 

multiple athletes during VBT have not been ideal. To overcome the labour-intensive nature of 

video analysis in resistance training research, some companies have improved upon the speed of 

repetition feedback in 2D motion analysis systems but to our knowledge, no immediate feedback 

improvements have been made to 3D motion analysis systems making them impractical for VBT.  

Sañudo and colleagues [34] recently validated a free 2D video analysis software program 

(Kinovea 0.8.15, www.kinovea.org, France) to quantify PV and mean propulsive velocity (MPV) 

of the Smith machine bench press at 20 kg, 30 kg, 40 kg, 50 kg, 60 kg, 70 kg, and 80 kg in 21 

recreationally trained men. It was reported that the software provided accurate assessments of PV 

and MPV with instantaneous repetition feedback when compared to an LT (T-Force, T-Force 

System Ergotech, Murcia, Spain). However, on closer inspection, the correlation findings (r = 0.47 

– 0.99), Bland Altman plots (PV: bias = -0.30 – -0.60 m·s-1, limits of agreement = 0.00 – -1.10 
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m·s-1; MPV: bias = -0.20 – -0.40 m·s-1, limits of agreement = -0.10 – -0.65 m·s-1) and group mean 

differences (PV:  -0.23 – -0.59 m·s-1; MPV: -0.14 – -0.43 m·s-1) suggest the Kinovea analysis 

software significantly over predicted (p < 0.05) PV and MPV and the validity was highly 

questionable due to the high variability seen with all loads assessed. In addition, other measures 

of validity such as the coefficient of variation (CV) and standard error of the estimate (SEE) were 

not reported, making a more accurate comparison and appraisal of these results problematic. 

Recent advancements in smartphone technologies with high-speed 2D cameras have aided 

the development of smartphone applications to measure barbell velocity [35]. Most individuals 

own and carry a smartphone, making it a practical tool for monitoring velocity. Although the 

velocity feedback is not instantaneous following each repetition, the analysis required to extract 

the velocity data (e.g. initial measurement of range of motion, selecting the start and finish of a 

repetition; entering barbell load) takes less than a minute, which is a significant time reduction 

compared to traditional 2D data extraction methods. Thus, the introduction of smartphone 

applications has significantly reduced the data acquisition time for 2D motion analysis to assess 

velocity. In addition, the reliability and validity of a smartphone application to assess velocity has 

recently been established. It was found that the smartphone application (Powerlift iOS app) had 

acceptable reliability (ICC = 0.91 – 0.99) and validity (r = 0.97 – 0.98; SEE = 0.03 – 0.05 m·s-1) 

for measuring MV compared with an LT (SmartCoach Power Encoder, SmartCoach Europe, 

Stockholm, Sweden) when participants performed six incremental sets (roughly 50%, 60%, 70%, 

80%, and 90% 1RM)) for the bench press, full depth back squat and hip thrust exercises. Although 

these results sound promising, the difficulty with using smartphone applications to measure 

velocity is that it requires an individual to record and analyse the data for each repetition which is 

acceptable if you are monitoring one athlete but could be tedious and time consuming if this 

method were to be applied to monitor a large squad of athletes. Furthermore, researchers in a 

laboratory environment ensure consistent distance and level phone position when filming an 

individual, whilst lay public purchasers of smartphone applications may not be as precise, which 

might make the published reliability outcomes unrealistic outside of the laboratory setting.  

To overcome the issues associated with video analysis in VBT research, many commercial 

devices have been developed that provide immediate and accurate repetition feedback, which 

allows coaches to make immediate training decisions that are data-driven. These devices have 

inspired researchers to conduct numerous studies assessing movement velocity in a variety of 

exercises. Popular devices to monitor velocity include LTs, accelerometer-based devices and 

smartphone applications, among others (Table 1). Each device differs in the accuracy, method of 
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data acquisition, analysis software, ability to provide instantaneous repetition feedback, cost, 

practicality and transportability.  

 
Table 1. Main features of devices measuring velocity. 

Device Accuracy 
Sampling 

Frequency (Hz) 
Cost 

Instantaneous 

Repetition Feedback 
Portable 

Linear Transducers      

GymAware Almost Perfect 2000 Moderate Yes Yes 

T-FORCE Almost Perfect 1000 Moderate Yes No 

Celesco Almost Perfect 1000  Moderate Yes No 

SmartCoach Almost Perfect 1000  Moderate Yes No 

3D & 2D Motion Analysis      

(3D) VICON Almost Perfect 200 High No No 

(2D) Video Camera Almost Perfect 125 - 1000 Low-

Moderate 

No Yes 

(2D) Smartphone app High 240 Low Yes Yes 

Accelerometer-based 

Technologies 

     

PUSH Moderate 200 Low Yes Yes 

Beast Sensor High 50 Low Yes Yes 

 

Linear Transducer (LT) Devices 

LTs are popular in laboratories and among professional sporting teams since they are small, 

reliable, valid, practical, and provide a copious amount of information regarding the performance 

of an athlete (Table 1) [36, 37]. To measure movement velocity, a sensor in the LT detects the 

changes in cable displacement with respect to time. Even though LTs can monitor velocity for 

most barbell resistance training exercises, they require the use of a cable/tether attachment to the 

barbell, which may restrict its suitability for some exercises. Furthermore, purchasing multiple 

LTs can be cost prohibitive for non-professional sporting teams, limiting the use of multiple LT 

systems to only the few athletes and coaches that can afford them. Nevertheless, with a bit of 

planning, a single LT unit can be utilised with many athletes during a single training session, which 

can make them relatively cost effective for a large sporting team, particularly compared to other 

laboratory equipment such as isokinetic dynamometers and force plates. Therefore, if the moderate 

to high cost (approximately US$2000) is not a burden, an LT can provide an effective option for 

measuring velocity in resistance training.  

One key thing to consider when using LTs during free-weight exercises is the location of the 

cable/tether attachment on the barbell with respect to the measured displacement of a repetition. 
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For exercises performed in a Smith machine, the barbell is connected to a rigid frame and has very 

limited, if any, flexibility, even at high loads. This means that as long as the cable is positioned in 

the same direction as the vertical bar path, the LT will accurately measure the movement velocity 

of a repetition. However, in free-weight exercises the barbell can distort at either end during the 

eccentric and concentric phases of a repetition when athletes lift with high absolute loads [38]. 

This suggests the displacement and associated velocity during a repetition will likely differ 

between the middle of the barbell (where the lifter is positioned) and the attachment point of the 

LT cable/tether (at the end of the barbell). For example, Appleby et al. [38] et al. had 12 well-

trained rugby union players complete two sets of two repetitions at 70%, 80%, and 90% 1RM for 

the 90° free-weight back squat exercise performed with maximal concentric effort. The athlete’s 

relative loads were then separated across four absolute load categories (120 – 129 kg, 140 – 149 

kg, 160 – 169 kg, 180 – 189 kg). Barbell displacement was measured between three methods 

including a LT (GymAware, GymAware PowerTool Version 5, Kinetic, Canberra) attached 65 cm 

left of the barbell’s centre (inside the barbell collar), 3D motion analysis tracking markers attached 

to the end of the barbell, and a cervical marker (C7), which was the criterion measurement. Results 

suggest the LT placement 65 cm left of barbell centre was highly valid (r = 0.96 – 0.98; CV = 2.1 

– 3.0%) compared to the criterion measurement location for the displacement data. The bias in 

displacement for the LT across the four load categories ranged from 0.9 – 1.5% compared to the 

C7 marker, whilst the markers on the end of the barbell, which were less valid (r = 0.71 – 0.97; 

CV = 2.1 – 3.0%), had a bias of between 6.9 – 10.7% for displacement measurements compared 

to criterion displacement. Therefore, despite valid and reliable measures of displacement for both 

the LT and 3D motion analysis markers attached to the end of the barbell, slight overestimations 

of barbell displacement increase as the displacement measurement location moves to the ends of 

the barbell in heavy back squats.  

 

Accelerometer-based Devices 

Accelerometer-based devices have become popular in recent times because of the interest in 

wireless measurement tools to assess kinematic variables without impeding lifting performance, 

which may occur when using a tether-based LT. These wireless accelerometers assess velocity by 

calculating the integration of acceleration with respect to time [39]. They are relatively cheap, 

making them appealing to nonprofessional coaches and athletes. Research suggests that 

accelerometer-based devices are valid for assessing movement velocity in free-weight exercises 
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including the Smith machine bench press (MV), Smith machine back squat (MV and PV), free-

weight barbell hip thrust (MV), dumbbell bicep curl (MV and PV) and Smith machine shoulder 

press (MV and PV) [35, 39]. Importantly, these previous studies assessing the validity of 

accelerometer-based devices to assess velocity combined all repetitions regardless of relative load 

for their validity analyses. Therefore, it is not known whether accelerometer-based devices are 

accurate across the entire relative load spectrum. This is important to discern since individuals lift 

with a variety of relative loads depending on the phase of training, and the accuracy of 

accelerometer-based devices to determine velocity may depend on the relative load lifted. 

Therefore, although accelerometer-based devices are relatively cheap, their ability to accurately 

determine velocity at across the entire relative load spectrum remains unclear. 

Interestingly, many of the commercially available devices are categorised as a wearable 

devices, but recent research has found that an accelerometer-based device worn on the body is less 

accurate in assessing velocity (MV) than when attached to the barbell [35]. In addition to the 

reduced accuracy, the wearable aspect of these devices can also be problematic regarding the 

perceived cost benefit compared to LTs. For example, if a device is purchased and worn by each 

member of a large sporting team then the cost is similar to the investment of a LT. Therefore, even 

though some accelerometer-based devices are advertised as wearable devices, research suggests 

that accelerometer-based devices should be attached to the barbell to increase the accuracy of 

velocity monitoring and also reduce the cost of equipment for a team with many athletes.  
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VELOCITY-BASED 1RM PREDICTIONS 

1RM – Velocity at 100%1RM (1RMV1RM) Prediction Method 

 

Figure 1. 1RM - Mean Velocity at 100%1RM (1RMV1RM) Prediction Method 

 

The monitoring of movement velocity has enabled researchers to create novel methods to 

predict 1RM from submaximal loads for specific exercises. A major benefit of 1RM predictions 

from submaximal loads is that an individual can estimate maximal dynamic strength without 

having to lift maximal loads or perform submaximal repetitions to failure. A unique 1RM 

prediction-based approach is performed by extrapolating the load from the intersection of an 

individual’s linear load-velocity regression line and the velocity at 1RM for that specific exercise 

(V1RM) (Figure 1) [22]. Thus far, research has shown that the V1RM-predicted 1RM method 

(1RMV1RM) using MPV can be used to accurately estimate the actual 1RM for the free-weight bench 

press (r = 0.99; CV = 0.82 – 1.48%), Smith machine bench press (r = 0.99; CV = 0.86 – 1.37%) 

and Smith machine half-squat (r = 0.98; CV = 0.38 – 0.75%) [40, 41]. Interestingly, the 1RMV1RM 

prediction method for Smith machine exercises appears to be as accurate as repetition to failure 

1RM prediction methods at loads ≤7RM – 10RM [42]. Contrastingly, recent work from Ruf et al. 

[43] found that although the 1RMV1RM method was reliable (ICC = 0.95 – 0.99; CV = 1.9 – 4.4%; 

standard error of the measurement [SEM] = 3.4 – 7.5 kg), it could not accurately predict daily 
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1RM (r = 0.88 – 0.95; CV = 3.3 – 4.4%; SEE = 9.1 – 13.7 kg) in the free-weight deadlift exercise 

due to the unstable V1RM (ICC = 0.63; CV = 15.7%; SEM = 0.03 m·s-1). Therefore, although it 

appears that the 1RMV1RM method may accurately predict the 1RM in Smith machine exercises, the 

same method could not predict 1RM in the free-weight deadlift. As the deadlift lacks a large 

eccentric component followed by a stretch reflex, it is possible that other free weight exercises 

may show different results. Therefore, it is important for researchers to determine if this method 

can accurately predict 1RM in other free-weight exercises such as the back squat. 

 

1RM – Minimum Velocity Threshold (1RMMVT) Prediction Method  

 

Figure 2. 1RM - Minimum velocity threshold (1RMMVT) prediction method. 

 

An alternative 1RM prediction method originated from the research from Izquierdo et al. 

[30] who had participants perform the Smith machine bench press and half-squat exercises. In that 

study, the authors suggested that the velocity obtained from the final repetition in a set to maximal 

voluntary concentric muscular failure and with different relative loads (60%, 65%, 70% and 

75%1RM) should be termed the minimum velocity threshold (MVT). Interestingly, the MVT at 

all relative loads assessed (60%, 65%, 70% and 75% 1RM) was similar to the V1RM for both the 

bench press (V1RM = 0.15 ± 0.03 m·s-1; 60% 1RM = 0.17 ± 0.04 m·s-1; 65% 1RM = 0.18 ± 0.05 
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m·s-1; 70%1RM = 0.18 ± 0.05 m·s-1; 75% 1RM = 0.17 ± 0.04 m·s-1) and half-squat exercises (V1RM 

= 0.27 ± 0.02 m·s-1; 60% 1RM = 0.33 ± 0.07 m·s-1; 65%1RM = 0.31 ± 0.06 m·s-1; 70% 1RM = 

0.32 ± 0.07 m·s-1; 75% 1RM = 0.31 ± 0.05 m·s-1). In light of this, recent research investigated 

whether the MVT (velocity type: MPV and MV) for the free-weight deadlift exercise performed 

at 70% and 80%1RM could be utilized in the linear regression equation of an individualised LVP 

to predict 1RM (Figure 2). Lake et al. [44] found the MVT was not accurate enough to predict the 

sessional 1RM for the deadlift (underestimated 1RM by 9–15%) because the MVT for the 70% 

1RM (0.28 ± 0.11 m·s-1) and 80% 1RM (0.32 ± 0.12 m·s-1) sets to failure were significantly 

different to the MPV (V1RM = 0.16 ± 0.05 m·s-1) and MV (V1RM = 0.17 ± 0.05 m·s-1) at 1RM [44]. 

At present there are no studies investigating MVT-based 1RM predictions using the Smith 

machine, but based on the results of Lake et al. [44] it appears that this method should not be used 

to predict free-weight 1RMs.  

 

1RM – Load at Zero Velocity (1RMLD0) Prediction Method 

 

Figure 3. 1RM - Load at zero velocity (1RMLD0) prediction method. 

 

An alternative approach to using movement velocity for 1RM predictions is to extrapolate 

the load which corresponds to zero velocity (LD0) from the load-velocity relationship (Figure 3). 
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The data point at LD0 is an overestimation of 1RM but the magnitude of overestimation is believed 

to be reliable for an individual in a specific exercise. A predicted 1RM linear regression equation 

is then constructed from the relationship between LD0 and the actual 1RM (1RMLD0). Jidovtseff 

et al. [23] showed that LD0 corresponded to 116 ± 8% of 1RM and was highly correlated (r = 

0.98) to the actual 1RM in the Smith machine concentric only bench press exercise. The 

subsequent group mean regression equation derived from the participants LD0-actual 1RM 

relationship could predict the 1RM with moderate accuracy (SEE = ~4.0 kg or ~7.0%). However, 

for the free-weight back squat, Hughes et al. [45] recently found the 1RMLD0 prediction method 

was moderately reliable (ICC = 0.78 – 0.82, CV = 8.2 – 8.6%) but the predicted 1RMs were 

significantly different from the actual 1RM and when analysed using Bland-Altman plots the 

1RMLD0 method exhibited a high degree of variability (bias = -4.34 – -0.05, 95% limits of 

agreement = ±20.2 – 30.0 kg). Based on these findings it is recommended the 1RMLD0 prediction 

method not be used to prescribe training loads. Although the 1RMLD0 prediction method seems 

promising in Smith machine exercises, the validity of this method to accurately predict 1RM in 

free-weight exercises appears to be flawed.  
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1RM – FV and LV Relationships (1RMFV) Prediction Method 

 

Figure 4. FV and LV relationships (1RMFV) prediction method. 

 

Another novel method to predict 1RM is based on the association between the force-velocity 

and load-velocity relationships. This method suggests the predicted 1RM is the heaviest load 

corresponding with the intersection of the regression lines of the load-velocity and force velocity 

relationship where the gravitational force an individual can produce is greater than the resisting 

weight (Figure 4). Picerno et al. [46] found that force-velocity/load-velocity 1RM predictions 

(1RMFV) almost perfectly correlated with the actual 1RM for the machine chest press and leg press 

exercises (r = 0.99). Bland-Altman and SEE analyses also demonstrated high validity (chest press: 

bias = -1.32 kg, 95% limits of agreement = -3.58 – 0.94 kg, SEE = 1.2 kg; leg press: bias = -1.76 

kg, 95% limits of agreement = -5.81 – 2.29 kg, SEE = 2.1 kg). While this 1RM prediction method 

appears to be a valid alternative to other 1RM prediction methods in machine weight exercises, 

research has found this may not be the case in free-weight exercises. Hughes et al. [45] found the 

reliability (ICC = -0.28 – 0.00) and validity (bias = -110.83 – 9.88, 95% limits of agreement = 

±152.7 – 317.5 kg) were extremely poor. The authors suggested the overestimations of 1RMFV 

predictions of 1RM were attributed to faster than expected velocities with low loads (20% – 

40%1RM), whilst the underestimations of maximal strength were caused by excessively slow 

velocities with heavy loads (80% – 90%1RM). Therefore, the 1RMFV prediction method may be 
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valid for predicting maximal strength in machine weight exercises but its accuracy for predicting 

the 1RM in the free-weight back squat exercise is not advised.  

 

1RM – Body weight 1RM (1RMBW) prediction method 

A limitation of previous 1RM prediction methods is that they require multiple training or 

warm-up sets to estimate 1RM. A more rapid and less demanding method of 1RM prediction has 

recently been proposed for Smith machine concentric only half-squats (90° knee angle), where a 

multiple linear regression equation can predict 1RM from just a single set of three repetitions 

performed with a load equal to body weight (1RMBW) [47]. The 1RMBW prediction equation (1RM 

= -61.93 + [121.92·MV] + [1.74·load]) requires only two variables, the load of the set equal to the 

individual’s bodyweight (in kilograms) and the MV (m·s-1) of the fastest repetition in the set. 

Bazuelo-Ruiz et al. [47] reported that for 105 untrained participants, the 1RMBW prediction method 

had very high validity (ICC = 0.79) but significantly underestimated (p < 0.001) the actual 1RM 

by an average error of 17.9 kg (0.25 kg·kg-1). In support of this, previous research has 

demonstrated that 1RM prediction methods should incorporate loads closer to 100% 1RM to 

ensure accuracy [48]; therefore, the magnitude of error reported by Bazuelo-Ruiz et al. [47] is 

likely due to the creation of the multiple linear regression equation from a relative load 

corresponding to only 52.1% 1RM. Despite this, the current 1RMBW prediction method appears to 

lack the accuracy required to monitor and adjust sessional training loads for well-trained athletes. 

In addition, group mean equations developed from untrained individuals may not be applicable for 

strength-trained athletes. 

 

RELIABILITY OF DIFFERENT VELOCITY MEASURES 

To truly understand which type of velocity should be used to monitor individuals for specific 

exercises, the reliability of the three types of concentric velocity must be established. Recent 

research has compared the reliability of PV, MV and MPV for the Smith machine eccentric-

concentric bench throw and concentric only bench throw exercises [49]. Garcia- Ramos et al. [49] 

found that PV, MV and MPV were all highly reliable for both types of bench throw variations 

from 20 – 90% 1RM (CV = 1.7 – 7.4%) but not at 100% 1RM (CV = 13.2 – 23.5%). Notably, PV 

appeared to be the most reliable velocity measurement and was significantly more reliable than 

MPV for both bench throw variations at all relative loads examined (20 – 100% 1RM). 

Interestingly, even though previous research has suggested that it may be more valid and 
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appropriate to monitor MPV than MV at light and medium loads [32], the results of Garcia- Ramos 

et al. [49] suggest that MV was significantly more reliable than MPV at light and medium loads 

for the eccentric-concentric bench throw (20 – 50% 1RM) and the concentric only bench throw 

(20 – 50% 1RM). However, even though MPV was found to be the least reliable of the different 

types of concentric velocity in the Smith machine bench throw, MPV was still reliable which 

suggests it may not matter which type of concentric velocity is used for monitoring purposes.  

Another recent study investigated the reliability of MPV in the Smith machine concentric-

only seated military press exercise. Balsalobre-Fernández et al. [50] found an almost perfect linear 

relationship (R2 = 0.987; SEE = 0.04 ± 0.02 m·s-1) existed between load and MPV, but MPV was 

relatively unstable (CV = 12.9 – 24.6%) at relative loads from 30 – 100% 1RM. This suggests that 

the use of tracking MPV in the Smith machine concentric-only seated military press exercise is 

questionable, but further research is required to determine if MPV as well as PV and MV are 

reliable in other exercises. Given the scarcity of comparable literature between Smith machine and 

free-weight resistance training exercises, it is difficult to provide a conclusive consensus on which 

velocity measure should be used during VBT. 

 

LOAD-VELOCITY PROFILES (LVP) 

Many studies have established that when an individual exerts maximal concentric effort with 

a consistent range of motion, an almost perfect inverse linear relationship exists between load and 

velocity in a variety of exercises including the Smith machine half squat [51, 52], Smith machine 

concentric only half squat [52], Smith machine full squat [51], Smith machine countermovement 

jump [52], Smith machine squat jump [52], Smith machine bench press [23, 31, 32, 53], Smith 

machine bench press throw [49], Smith machine prone bench pull [53], Smith machine military 

press [50], free-weight deadlift [44], and pull up [54]. Several studies investigating the load-

velocity relationships have provided group mean equations for each exercise [23, 31, 51], but more 

recent research recommends that individualised load-velocity relationships should be created since 

individuals produce unique movement velocities based on factors associated with their limb 

biomechanics and fibre type expression [49, 50, 55]. The results and recommendations from this 

research has encouraged strength and conditioning coaches to profile their athletes for each 

exercise by creating individualised LVPs. This is practically useful since it is hypothesised that 

when an athlete is fatigued, they may perform repetitions with reduced movement velocity 

compared to their LVP that was established in a non-fatigued state. On the other hand, if an 
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individual has increased their maximal strength, their movement velocity is believed to also 

increase with the same absolute load according to the load-velocity relationship. However, there 

is a paucity of evidence reporting the reliability of movement velocity and the typical error 

observed between training sessions. This is important to quantify so that training decisions based 

on changes in movement velocity can be made with a certain level of accuracy.   

 Research by Gonzalez-Badillo et al. [31] investigated the stability of MPV at baseline and 

following six weeks of upper body resistance training with the same relative loads (at 5% 

incremental loads between 30% and 100% 1RM). Notably, the test/re-test reliability of MPV at 

baseline was not reported, so the typical variation in MPV between sessions is not known. 

However, despite an average improvement of 9.3% in maximal strength, there was no statistically 

significant change in MPV across the relative load spectrum (ICC = 0.81 - 0.91; CV = 0.0 - 3.6%) 

including the velocity at 100% 1RM (V1RM). This suggests that even when maximal strength 

changes, the MPV remains stable at the same relative load according to the LVP. Therefore, MPV 

can be measured to monitor and prescribe relative load. Importantly, no study has verified whether 

movement velocity remains stable at the same relative load when maximal strength changes 

following a training intervention for a free-weight lower body exercise.  

García-Ramos et al. [49] examined the reliability of PV, MPV and MV in the eccentric-

concentric and concentric only bench press throw exercises performed on a Smith machine. Thirty 

participants performed four 1RM sessions, twice a week, at least 48-hours apart, with two sessions 

of the same bench press throw variant performed within the same week. Interestingly, they 

determined that PV, MPV and MV were all reliable at relative loads from 20% to 90% 1RM in 

5% incremental loads but V1RM was unreliable with all concentric movement velocity types. PV 

was found to be more reliable between sessions than MV and MPV. However, it was determined 

that MV was the most appropriate velocity variable for creating individualised LVPs and 

monitoring training since it was reliable and provided the most linear load-velocity relationship 

for both the eccentric-concentric and concentric only bench press throw exercises. Similarly, 

Pestaña-Melero et al. [55] found PV, MPV and MV were all reliable at relative loads from 20% to 

90% 1RM (in 5% incremental loads) except for V1RM in the eccentric-concentric and concentric 

only bench press performed on a Smith machine. Despite these promising findings, no studies 

have examined the reliability of PV, MPV and MV in a commonly utilized lower body free-weight 

exercise such as the squat. Furthermore, no research has looked at using individualised LVPs to 

modify training load. Research should investigate the efficacy of such training strategies to 

account for individual differences in the rate of training adaptation, since the LVP-based VBT 
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method could be a practical and valid strategy to adjust training load according to the velocity of 

repetitions performed in the warm-up and comparing with the individuals LVP. 

 

VELOCITY LOSS THRESHOLDS 

One of the more common approaches to VBT allows the magnitude of velocity loss during 

training to dictate the end of a working set. If a pre-determined velocity loss threshold is 

established, the termination of that set can occur when the velocity of the concentric portion of the 

lift falls short of the threshold [21]. Since faster movement velocities with a given load increase 

the neuromuscular stimuli and adaptations to strength training [14], decreases in movement 

velocity can be detrimental. Furthermore, training to concentric muscular failure can be 

unfavourable for maximising gains in strength and power output, particularly in well-trained 

athletes who are likely candidates for adopting VBT [12, 13]. Therefore, if the training target is to 

optimise maximal strength and power development, one can monitor the barbell velocity and 

implement velocity loss thresholds to avoid performing repetitions at or close to concentric 

muscular failure.  

Two variations of the velocity loss threshold method have been introduced [21]. The variable 

sets velocity loss threshold (VSVL) method includes a fixed training load and total number of 

repetitions, but allows for an indefinite number of sets, each finishing when a repetition velocity 

drops below a pre-determined maximum percent velocity loss [33]. This method allows an athlete 

to complete as many high velocity repetitions in as few sets as possible, which allows for flexibility 

in determining the optimal repetition scheme to accommodate daily fluctuations in performance. 

For example, if an athlete is able to maintain high velocity outputs that do not go below the velocity 

loss threshold, then the strength session could theoretically be completed in a shorter period of 

time. Contrastingly, if an athlete is unable to maintain high velocity repetitions above the 

acceptable velocity loss threshold then they are afforded more sets and total recovery time to 

complete the total number of prescribed repetitions.   

Pérez-Castilla et al. [33] employed the VSVL method in the loaded Smith machine 

countermovement jump (CMJ) exercise over a four-week training period. The target MPV (1.20 

m·s-1 equating to ~40% 1RM) and total repetitions (36-repetitions) were matched between groups 

with the only difference pertaining to the allowed velocity loss threshold during each set of the 

CMJ (10% vs. 20%). Over the entire training study, participants who performed sessions with a 

10% MPV loss threshold performed repetitions with significantly higher velocities than the 20% 
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MPV loss group yet had comparable increases in CMJ-1RM and similar decreases in 15m sprint 

times. However, it should be stated that all participants in this study also performed three 

additional lower body dominant exercises in the same sessions which were performed in the same 

manner between groups and did not comply with the VSVL method (matched for load, sets, 

repetitions, load etc.). Therefore, the true training effect of the different velocity loss 

configurations for the CMJ was likely to have been neutralised. Consequently, future studies 

should look to examine the effects of just the VSVL method. 

An alternative strategy to the VSVL method is the fixed sets velocity loss threshold (FSVL) 

method. This requires a coach to predetermine an athletes training load and number of sets but has 

them perform repetitions in a set until they are no longer able to produce the required velocity. 

Pareja-Blanco et al. [20] found that participants who trained for eight weeks with high relative 

loads (~68% to ~85%1RM) in the Smith machine back squat exercise using a 20% velocity loss 

threshold trained with approximately 40% fewer repetitions (total repetitions: 185.9 ± 22.2 vs. 

310.5 ± 42.0) and faster movement velocities for the training repetitions (MV: 0.69 ± 0.02 m·s -1 

vs. 0.58 ± 0.03 m·s-1) compared to a 40% velocity loss threshold group, yet had similar 

improvements in maximal strength (p>0.05, 18.0% vs. 13.4%) and significantly greater increases 

in CMJ height (9.5% vs. 3.5%). Based on the findings of Pareja-Blanco et al. [20], it appears that 

a 20% velocity loss threshold for the squat performed with high relative loads is effective for 

strength and power development.  

Another study by Pareja-Blanco et al. [26] had 16 resistance-trained professional male 

soccer players perform six weeks (18 sessions, ranging from ~50 to ~70%1RM) of Smith machine 

back squat training and were evenly assigned into two groups, which differed by a 15% or 30% 

velocity loss threshold in each training set. Subsequently, the 15% velocity loss group trained with 

significantly fewer repetitions (total repetitions: 251.2 ± 55.4 vs. 414.6 ± 124.9; mean 

repetitions/set: 6.0 ± 0.9 vs. 10.5 ± 1.9) and at faster movement velocities (MV: 0.91 ± 0.01 m·s-1 

vs. 0.84 ± 0.02 m·s-1), yet had significantly greater increases in maximal strength (estimated 1RM 

squat) and power output (CMJ height) compared to the 30% velocity loss group. However, 

significantly greater hypertrophy was observed in the 30% velocity loss group, which 

demonstrates that smaller velocity loss thresholds may be suitable for enhancing maximal strength 

and power development, but the reduced resistance training volume may be detrimental to 

hypertrophic gains. The aforementioned velocity loss threshold research has merit for 

individualised training load prescription but notably, these studies had their participants perform 

exercises on a Smith machine and not in a large mass free-weight barbell exercise. This is 
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important to discern since free-weight exercises often require movements in both the vertical and 

horizontal planes and are extensively utilised in practice with most athletes. 

 

SUMMARY OF LITERATURE REVIEW 

In summary, this chapter consisted of five main sections. Firstly, it reviewed the advantages 

and limitations of velocity measuring devices related to VBT, outlining the need to verify practical 

devices that can accurately measure velocity but also provide immediate feedback so that training 

decisions (termination of a set or training load modification) can be made rapidly. The second 

main section discussed the myriad of 1RM prediction methods and their limitations regarding 

accuracy. The 1RMV1RM appeared to be the most accurate method for predicting maximal strength 

but there is a dearth of research examining such prediction methods in free-weight exercises. 

Research investigating the reliability of PV, MPV, and MV is discussed in section three. These 

three concentric velocities are often used to develop LVPs, but research is scarce and inconclusive 

with only upper body Smith machine exercises currently investigated. Furthermore, there is a 

paucity of evidence reporting the typical variation in velocity between training sessions. The 

reliability and typical variation in velocity should be ascertained so that strength and conditioning 

coaches can make training decisions with some degree of accuracy based on meaningful changes 

in velocity. In addition, the reliable velocities and their corresponding relative loads can be 

incorporated into LVPs with the potential to be used as a training method to adjust load, which is 

discussed in section four. Lastly the final section discussed the logic and application of velocity 

loss threshold research to manipulate training volume (number of repetitions per set) for the 

enhancement of strength and power. However, no study has investigated VBT methods for 

modifying training load based on when training volume is matched. 
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CHAPTER 3: STUDY 1 

VALIDITY OF VARIOUS METHODS FOR DETERMINING 

VELOCITY, FORCE AND POWER IN THE BACK SQUAT 

Banyard HG, Nosaka K, Sato K, and Haff GG 

International Journal of Sports Physiology and Performance 

ABSTRACT 

Purpose: This investigation examined the validity of two kinematic systems for assessing MV, 

PV, mean force (MF), peak force (PF), mean power (MP), and peak power (PP) during the full 

depth free-weight back squat performed with maximal concentric effort. Methods: Ten strength-

trained men (26.1 ± 3.0 y; 1.81 ± 0.07 m; 82.0 ± 10.6 kg) performed three 1RM trials on three 

separate days, encompassing lifts performed at six relative intensities including 20%, 40%, 60%, 

80%, 90%, and 100% 1RM. Each repetition was simultaneously recorded by a PUSH band, 

commercial LT (GymAware [GYM]), and compared with measurements collected by a laboratory 

based testing device consisting of four LTs and a force plate. Results: Trials 2 and 3 were used 

for validity analyses, combining all 120 repetitions indicated the GYM was highly valid for 

assessing all criterion variables while the PUSH was only highly valid for estimations of PF (r = 

0.94; CV = 5.4%; ES = 0.28; SEE = 135.5 N). At each relative intensity, the GYM was highly 

valid for assessing all criterion variables except for PP at 20% (ES = 0.81) and 40% (ES = 0.67) 

of 1RM. Moreover, the PUSH was only able to accurately estimate PF across all relative intensities 

(r = 0.92 – 0.98; CV = 4.0 – 8.3%; ES = 0.04 – 0.26; SEE = 79.8 – 213.1 N). Conclusions: The 

PUSH accuracy for determining MV, PV, MF, MP, and PP across all six relative intensities was 

questionable for the back squat, yet the GYM was highly valid at assessing all criterion variables, 

with some caution given to estimations of MP and PP performed at lighter loads. 
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INTRODUCTION 

Assessments of velocity, force and power are often employed to monitor training induced 

adaptations [31, 56, 57]. For elite athletes, changes in these measures can be minor, yet significant. 

As a consequence, equipment used to monitor changes in performance should be precise. In a 

laboratory based environment, LTs are often used to accurately measure velocity, force plates 

ascertain ground reactions forces, and a combination of LTs and force plates can be employed to 

estimate power output [37, 58-60]. Importantly, laboratory based testing is considered the “gold 

standard” for data collection, yet is limited due to the large expense, transportation difficulties, 

and practical complications that can arise from testing with large groups of team sport athletes. 

Consequently, several field based devices including portable LTs, accelerometers, and inertial 

sensors (combination of accelerometer and gyroscope) have been invented to overcome these 

limitations [36, 61-63]. However, it is important to determine the devices accuracy to ensure that 

training decisions are not made as a result of device measurement error. 

One LT device scientifically determined to accurately assess kinematic variables is the 

GymAware [37, 60, 64]. This portable field based device is a popular tool used to monitor and test 

athletes. However, it may be cost prohibitive for non-professional sporting teams thus limiting its 

use by coaches and athletes. Furthermore, since it requires the use of a cable/wire attachment to 

the barbell, it can be limited in the number of lifting exercises that it can effectively quantify. 

Consequently, there has been an increased interest in wireless measurement tools to assess 

kinematic variables without impeding lifting performance due to direct attachments.  

Recently, a wearable inertia sensor (PUSH) has been developed to measure velocity during 

resistance training exercises. In addition, it has been suggested that force and power can be 

accurately estimated from the determined velocity of movement. Presently, only two studies have 

validated the PUSH with one study employing a Smith machine exercise [39], while the other 

investigated dumbbell exercises [65]. Interestingly, both studies suggested the PUSH accurately 

measured both mean and peak velocity. However, no previous study has examined the validity of 

the PUSH with the use of a large mass free-weight exercise, such as the back squat, across a variety 

of training intensities. Importantly, the PUSH is relatively inexpensive compared to the GYM but 

since many sporting teams already possess GYM technology, evaluating the accuracy of 

measurement devices such as the PUSH is highly beneficial. Therefore, the purpose of this study 

was to investigate the ability of two field-based devices to accurately measure velocity, force and 

power in the back squat exercise compared to laboratory based testing equipment. 
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METHODS 

Participants   

Ten male resistance-trained volunteers took part in this study (26.1 ± 3.0 y; 1.81 ± 0.07 m; 

82.0 ± 10.6 kg). All participants could perform the full back squat with at least 1.5 times their body 

mass, had at least 6 months of resistance training experience, and were injury free. The 

participant’s average 1RM back squat and 1RM to body mass ratio were 142.1 ± 33.8 kg and 1.72 

± 0.23 kg, respectively. All participants provided written informed consent prior to participation 

in the present study in accordance with the ethical requirements of Edith Cowan University Human 

Research Ethics Committee and the Code of Ethics of the World Medical Association (Declaration 

of Helsinki). 

Study Design 

This study assessed the validity of the PUSH and GYM devices in order to determine the 

accuracy of MV, PV, mean force (MF), peak force (PF), mean power (MP) and peak power (PP) 

during two incremental back squat 1RM assessments compared to a laboratory based testing 

(LAB) device (i.e. 4 LTs and force plate). All participants performed an initial 1RM assessment 

(trial 1) followed by two further 1RM trials (trials 2 and 3) with each trial separated by 48 hours. 

The initial 1RM assessment was done so that accurate relative 1RM loads could be lifted in the 

remaining two 1RM sessions. Consequently, the field and laboratory devices were only used to 

measure the criterion variables during trials 2 and 3.  

Testing Procedure 

One-Repetition Maximum (1RM) Assessment 

1RM assessments were performed in a power cage (Fitness Technology, Adelaide, 

Australia) using a 20 kg barbell (Eleiko®; Halmstad, Sweden). The warm-up and procedures were 

identical in all 1RM assessments with participants commencing the session by pedalling on a cycle 

ergometer (Monark 828E cycle ergometer; Vansbro, Dalarna, Sweden) for five minutes at 100 W 

and 60 revolutions per minute, performing three minutes of dynamic stretching, followed by a 

back squat protocol consisting of three repetitions at 20%, 40%, and 60% 1RM, and 1-repetition 

at 80%, 90%, and 100% 1RM. These relative loads were estimated for session 1. Reliability of 

this method to determine 1RM has been previously established (ICC = 0.99; CV = 2.1%; SEM = 

2.9 kg; effect size [ES] = 0.03) [66]. Following successful 1RM attempts, the weight was increased 

between 0.5 and 2.5 kg until no further weight could be lifted, with a maximum of five 1RM 
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attempts given. Participants were instructed to apply constant downward pressure on the barbell 

and to keep their feet in contact with the floor for the entirety of the repetition. Passive recovery 

time between warm-up sets was two minutes while three minutes rest period was given between 

1RM attempts. For each back squat repetition, the eccentric phase was performed in a controlled 

manner at a self-selected velocity until full knee flexion was achieved whereas the concentric 

phase was completed as fast and impulsively as possible with the aid of verbal encouragement. 

Peak knee flexion angle at the bottom of the squat (123.1 ± 11.2°) was measured in trial 1 using a 

goniometer. This knee angle at the bottom of the squat corresponded to a specific barbell depth 

recorded on a LabView analysis program. The recorded barbell depth at full knee flexion was then 

monitored by visual displacement curves on the LabView analysis program to ensure the same 

barbell depth was maintained for each repetition in all trials [66, 67]. 

Data Acquisition 

For trials 2 and 3, each repetition was simultaneously measured using the PUSH, GYM and 

LAB methods. The PUSH was worn on the right forearm immediately inferior to the elbow crease 

with the on/off button located proximally (as suggested by the manufacturer) [39, 65]. Data 

obtained from the PUSH were recorded at a sampling rate of 200 Hz via Bluetooth connection 

with a smartphone (iPhone, Apple Inc., California, USA) using a proprietary application [39, 65]. 

In contrast, the GYM data were transmitted via Bluetooth to a tablet (iPad, Apple Inc., 

California, USA). The GYM recorded the displacement time curve data by determining changes 

in the barbell position. The device sampled and time stamped the changes in barbell position at 20 

ms time points [68], which was down sampled to 50 Hz for analysis [60]. Velocity and acceleration 

data were then calculated from the first and second derivate of the change in barbell position with 

respect to time. Force values were determined from the system mass multiplied by the acceleration 

data, where system mass was the barbell load plus the relevant body mass of the participant. Power 

values were evaluated from the product of the force and velocity curve data. Comparatively, the 

PUSH determined velocity by measuring the linear accelerations and angular velocities of the 

movement where vertical velocity was calculated by the integration of acceleration with respect 

to time [39]. Similar to the GYM, force estimations by the PUSH were calculated from the system 

mass multiplied by the acceleration data whereas power values were determined from the product 

of the force and velocity curve data. 

For the LAB system, all kinetic and kinematic data were collected using similar 

methodology to previous research [66, 67, 69]. Briefly, velocity measures were captured from four 
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LTs (Celesco PT5A-250; Chatsworth, California, USA) that were mounted to the top of the squat 

rack with two positioned in an anterior and posterior location on both the left and right side of the 

barbell [67]. The utilization of four LTs allowed for the quantification of both vertical and 

horizontal movements for both sides of the barbell and establishes a more accurate “central 

displacement” position [67]. Both MF and PF were obtained directly from the quantification of 

ground reaction forces with the use of a force plate (AMTI BP6001200, Watertown, 

Massachusetts, USA). Power measures were calculated from the product of the direct 

measurement of ground reaction force and bar velocity [67, 70]. The LT and force plate data were 

collected through a BNC-2090 interface box with an analogue-to-digital card (NI-6014; National 

Instruments, Austin, Texas, USA) and sampled at 1000 Hz. All data were collected and analysed 

using a customised LabVIEW program (National Instruments, Version 14.0). All signals were 

filtered with a 4th order-low pass Butterworth filter with a cut-off frequency of 50 Hz. The total 

tension on the barbell as a result of the transducer attachments was 17.25 N in a superior direction, 

which was accounted for in all calculations. 

Values of MV, MF, and MP obtained by the PUSH, GYM and LAB, were determined as the 

average of the data collected during the concentric phase of the movement (greatest descent to 

standing position), whereas PV, PF, and PP were determined as the maximum value in the same 

concentric period. From trials 2 and 3, only one repetition (fastest average concentric velocity 

determined from LAB data) was selected from each of the sets performed at 20%, 40%, and 60% 

1RM to ensure an equal number of repetitions were used for the validity analyses from each 

relative intensity.  

Statistical Analyses 

Validity analyses of the GYM and PUSH were determined by 1) combining all 120 

repetitions performed by each individual regardless of relative load, and 2) examining the devices 

at each relative intensity (20%, 40%, 60%, 80%, 90%, and 100% 1RM). The validity of the field-

based devices was determined from the magnitude of the Pearson product moment correlation (r), 

CV, and the ES. For this study, the field based devices were deemed highly valid if they met the 

three following criteria: very high correlation (>0.70) [71], moderate CV (10%) [72, 73], and a 

trivial or small ES (<0.60) based on the Hopkins modified Cohen scale (<0.20, trivial; 0.2 - 0.6, 

small; 0.6 - 1.2, moderate; 1.2 - 2.0, large; 2.0 - 4.0, very large; >4.0, extremely large) [74, 75]. 

The SEE was also determined [75]. Confidence limits for all validity analyses were set at 95%. 

Systematic bias between LAB and field based methods for each criterion measure was assessed 
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using a repeated measures analysis of variance (ANOVA) with correction for sphericity and a 

type-I error rate set at  < 0.05 (IBM SPSS version 22.0, Armonk, New York, USA). Tukey post 

hoc comparisons were utilized when appropriate. Data are reported as mean ± SD unless stated 

otherwise.  

RESULTS 

Average values of mean and peak velocity, force and power at each relative load are 

displayed in Figure 5. Systematic bias was evident for PUSH estimations of MF and PP, and GYM 

estimates of PF and PP (Figure 5). When all 120 repetitions were combined, the PUSH was highly 

valid for estimations of PF only (Figure 6). By comparison, the GYM was highly valid for all 

criterion variables.  

When the data were analysed at the six relative intensities, the GYM was highly valid across 

all relative loads for values of MV, PV, MF, and PF (Figures 7 – 10). However, MP and PP values 

estimated by the GYM were not highly valid at 20 and 40% of 1RM due to the moderate ES 

(Figure 11C & 12C). The PUSH was highly valid at all relative intensities for estimations of PF 

only (Figure 10). More specifically, the PUSH did not meet our criteria of high validity for 

estimations of MV at greater than or equal to 80% of 1RM (Figure 7); PV above 20% of 1RM 

(Figure 8); MF at or below 90% of 1RM (Figure 9); MP at 40% of 1RM and above (Figure 11); 

and PP at all relative intensities (Figure 12). 
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Figure 5. Mean and peak values of velocity, force, and power. Abbreviation: 1RM, 1-repetition 

maximum. *Significant differences between PUSH and Laboratory methods. #Significant 

differences between GymAware and Laboratory methods. 
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Figure 6. Validity of the PUSH and GymAware for the measurement of mean velocity (MV), peak 

velocity (PV), mean force (MF), peak force (PF), mean power (MP), and peak power (PP). Forest 

plots displaying (A) Pearson correlation coefficient, (B) coefficient of variation, (C) effect-size 

estimates, and standard error of the estimate for (D) MY and PV, (E) MF and PF, and (F) MP and 

PP. 

 

DISCUSSION 

The aim of this study was to assess the validity of two field based devices to accurately 

determine mean and peak values of velocity, force and power in the back squat exercise. When all 

repetitions were combined for analyses regardless of the relative load, the GYM was valid in the 

assessment of all criterion variables yet the PUSH only accurately estimated PF. Although this 

information is helpful and allows us to compare our results with previous findings [39, 65], it is 

important to understand the accuracy of field based devices at a variety of relative intensities since 

most athletes will perform resistance-training exercises with varying loads depending on the phase 

of the periodized training plan. Thus, when the data were analysed for each relative load, the GYM 

accurately estimated all criterion variables except for PP, which was invalid at lighter loads, more 

specifically, at 20% and 40%1RM in the back squat exercise. By comparison, the PUSH was only 
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able to accurately estimate PF across all relative intensities. Moreover, MV, PV, MF, MP, and PP 

quantified by the PUSH across all six relative loads were questionable.  

 

Figure 7. Validity of mean velocity in the back squat for the PUSH and GymAware devices at 20%, 

40%, 60%, 80%, 90%, and 100% of 1-repetition maximum (1RM) compared with Laboratory 

methods. Forest plots displaying (A) Pearson correlation coefficient, (B) coefficient of variation, 

(C) effect-size estimates, and (D) standard error of the estimate. Abbreviation: 1RM, 1-repetition 

maximum. Area shaded in grey indicates the zone of acceptable validity. Error bars indicate 95% 

confidence limits. 

 

For measurements of MV, the PUSH was less valid at heavier loads when compared to LAB 

results. Specifically, the greatest lack of validity was seen at loads equal to and above 80% 1RM, 

which is problematic for athletes using the device when training with higher intensities when 

targeting maximal strength development. Despite this shortcoming, the PUSH band met the 

validity criteria in the measurement of MV at light and moderate loads (<60% 1RM). Interestingly, 

for measurements of PV the PUSH was only valid at the lightest load tested (20% 1RM). Based 



34 

 

on the results of this study, we would suggest the PUSH can accurately measure MV at light and 

moderate relative loads, typically used in the back squat during power based training programs, 

but is questionable for measurements of PV across the relative intensity spectrum.  

 

Figure 8. Validity of peak velocity in the back squat for the PUSH and GymAware devices at 20%, 

40%, 60%, 80%, 90%, and 100% of 1-repetition maximum (1RM) compared with Laboratory 

methods. Forest plots displaying (A) Pearson correlation coefficient, (B) coefficient of variation, 

(C) effect-size estimates, and (D) standard error of the estimate. Area shaded in grey indicates the 

zone of acceptable validity. Error bars indicate 95% confidence limits. 

As previously mentioned, two studies have investigated the validity of the PUSH to measure 

MV and PV. Balsalobre-Fernández et al. [39] compared the measurements of the PUSH to a single 

LT (T-force) in the full depth Smith machine back squat. Ten physically active male participants 

performed five sets of three repetitions with the five incremental loads pertaining to 20 kg, 40 kg, 

60 kg, and 70 kg (anecdotally suggested to represent 25 to 85% 1RM for each participant). When 
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all 150 repetitions (every repetition for each subject) were combined for their validity analyses the 

PUSH accurately measured MV (r = 0.85; SEE = 0.08 ms-1) and PV (r = 0.91; SEE = 0.10 ms-1). 

Interestingly, the correlation and measurement error results from Balsalobre-Fernández et al. [39] 

were comparatively similar to the PUSH measurements of MV (r = 0.93; SEE = 0.10 ms-1) and 

PV (r = 0.91; SEE = 0.15 ms-1) reported in the present study. However, the present study would 

suggest the PUSH was not accurate for measuring MV and PV due to the poor CV% and were not 

consistent with those reported by Balsalobre-Fernández et al. [39] for a similar action. This may 

be due to the difference in barbell paths between Smith machine (fixed linear action) and free-

weight back squat. 

 

Figure 9. Validity of mean force in the back squat for the PUSH and GymAware devices at 20%, 

40%, 60%, 80%, 90%, and 100% of 1-repetition maximum (1RM) compared with Laboratory 

methods. Forest plots displaying (A) Pearson correlation coefficient, (B) coefficient of variation, 

(C) effect-size estimates, and (D) standard error of the estimate. Area shaded in grey indicates the 

zone of acceptable validity. Error bars indicate 95% confidence limits. 
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Similarly, Sato et al. [65] reported the validity of the PUSH for measurements of MV and 

PV compared to a 3D motion analysis capture system (VICON-Peak, Oxford Metrics, Oxford, 

UK) in the dumbbell bicep curl and dumbbell shoulder press exercises. Five recreationally trained 

participants performed both exercises with two sets of 10 repetitions at 4.54 kg, and two sets of 10 

repetitions at 6.82 kg. Similar to Balsalobre-Fernández et al. [39], Sato et al. [65] combined all 

repetitions (200 repetitions) regardless of load for statistical analyses and concluded the PUSH 

was highly valid at measuring MV and PV for the bicep curl (MV: r = 0.86, SEE = 0.09 ms-1; PV: 

r = 0.80, SEE = 0.16 ms-1) and shoulder press exercises (MV: r = 0.88, SEE = 0.06 ms-1; PV: r 

= 0.92, SEE = 0.11 ms-1). These correlations and measurement error findings also compare well 

with the results from the present study (Figure 6) even though the modes of exercises investigated 

were different between studies but like the Balsalobre-Fernández et al., [39] study, Sato et al. [65] 

also did not report the CV. Although the findings of previous research validating the PUSH are 

helpful and accurately reflect how the data were analysed, they are somewhat limited since the 

validity of the PUSH was not reported at specific relative intensities. Importantly, the present study 

found the accuracy of the PUSH varies depending on the intensity lifted, which is important to 

discern as athletes often train at a variety of relative loads throughout the training year. 

Nevertheless, the aforementioned studies observed similar velocities to those determined in the 

present study when all repetitions were combined for analyses regardless of the load. Interestingly, 

Sato et al. [65] and Balsalobre-Fernández et al. [39] detected systematic bias for estimations of 

MV and PV by the PUSH which was not observed in the present study. 

Unsurprisingly, the GYM accurately measured MV and PV across all relative loads. 

However, there were minor but non-significant differences observed between GYM (1 LT) and 

LAB (4 LTs) assessment of MV and PV. This was likely due to slight variations in horizontal and 

vertical displacement on either side of the barbell (bar path) that can occur when using a single LT 

[69]. This has been observed in previous research where Cormie et al. [70] assessed differences in 

the measurement of PV between 1 LT and 2 LTs for the jump squat exercise performed at 30 and 

90% 1RM. They reported the 1 LT system significantly (p < 0.05) over predicted measurements 

of PV at 90% but not 30% 1RM compared to 2 LTs. However, contrary to the findings of Cormie 

et al. [70] we did not find any significant differences between the GYM and LAB for MV or PV 

at any relative intensity.  
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Figure 10. Validity of peak force in the back squat for the PUSH and GymAware devices at 20%, 

40%, 60%, 80%, 90%, and 100% of 1-repetition maximum (1RM) compared with Laboratory 

methods. Forest plots displaying (A) Pearson correlation coefficient, (B) coefficient of variation, 

(C) effect-size estimates, and (D) standard error of the estimate. Area shed in grey indicates the 

zone of acceptable validity. Error bars indicate 95% confidence limits. 

 

To our knowledge this is the first study to assess the accuracy of the PUSH to estimate force 

and power during the back squat. Uniquely, the PUSH accurately estimated PF across all relative 

intensities compared to LAB, yet was only highly valid for the estimation of MF at 1RM. In 

addition, the PUSH estimations of MP and PP were not highly valid at all relative intensities except 

for MP at 20% 1RM. Furthermore, the PUSH estimates of MP appeared to follow a linear trend 

across the six relative loads, which are not typically reported in the scientific literature [58]. 
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The present study detected systematic bias in the PUSH estimations of PP and MF but not 

PF. Similarly, previous studies have identified the presence of systematic bias (p < 0.05) in 

accelerometers, most notably for estimations of PF and PP compared to direct assessments of 

ground reaction forces from a force plate (Force) and the combination of a force plate and LT 

(Power) methodologies [61, 64]. For example, Comstock et al. [61] observed systematic bias for 

an accelerometer (Myotest®, Myotest Inc, Sion, Switzerland) in the estimation of PF and PP 

compared to a force plate (Ballistic Measurement System Innervations Inc, Fitness Technology 

force plate, Skye, Australia) and LT (Celesco PT5A-250; Chatsworth, California, USA) method 

with the bench throw and jump squat exercises performed at 30% 1RM. Comparatively, the present 

study also observed systematic bias for estimations of PF and PP by the GYM, specifically for PP 

at 20% and 40% 1RM. Importantly, the systematic bias observed for estimations of PF and PP 

from a LT at light loads has previously been reported. Cormie et al. [70] also reported the presence 

of systematic bias for estimations of PF and PP derived with one LT compared to a force plate and 

LT method of force/power assessment at 30% 1RM for the jump squat exercise. Despite the 

presence of systematic bias in the present study for estimations of PF and PP by the GYM, the LT 

was still highly valid.  
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Figure 11. Validity of mean power in the back squat for the PUSH and GymAware devices at 20%, 

40%, 60%, 80%, 90%, and 100% of 1-repetition maximum (1RM) compared with Laboratory 

methods. Forest plots displaying (A) Pearson correlation coefficient, (B) coefficient of variation 

(C) effect-size estimates, and (D) standard error of the estimate. Area shaded in grey indicates the 

zone of acceptable validity. Error bars indicate 95% confidence limits. 

The systematic bias observed for the GYM was also in accordance with Crewther et al. [64] 

who compared the accuracy of a LT (GymAware) and accelerometer (Myotest, Myotest Inc. 

Switzerland) with a force plate (Kistler, Kistler Instruments Ltd, Farnborough, USA) to determine 

PF and PP with increasing loads (20 kg, 40 kg, 60 kg, and 80 kg) in the jump squat exercise. 

Systematic bias was detected at the lighter loads in the estimation of PF (20 and 40 kg) and PP (20 

kg) for the GYM. Furthermore, moderate to high validity for PF and PP estimations in both the 

LT (PF: r = 0.59 to 0.87, SEE = 39 to 202 N; PP: r = 0.62 to 0.82, SEE = 45 to 401 W) and 
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accelerometer (PF: r = 0.87 to 0.97, SEE = 7 to 171 N; PP: r = 0.66 to 0.90, SEE = -180 to 141 

W) were reported. If one compares the results of Crewther et al. [64] to the present study, the 

PUSH compares well with accelerometer devices for estimations of PF and PP. However, based 

on the correlation and SEE data, it appears the GYM is more accurate in the current study 

compared to previous research, possibly due to the less rapid speeds observed in the back squat 

exercise.  

 

Figure 12. Validity of peak power in the back squat for the PUSH and GymAware devices at 20%, 

40%, 60%, 80%, 90%, and 100% of 1-repetition maximum (1RM) compared with Laboratory 

methods. Forest plots displaying (A) Pearson correlation coefficient, (B) coefficient of variation, 

(C) effect-size estimates, and (D) standard error of the estimate. Area shaded in grey indicates the 

zone of acceptable validity. Error bars indicate 95% confidence limits. 

Differences observed for the PUSH and GYM estimations of force and power compared to 

the LAB system were likely due to a multitude of factors. These include the different sampling 
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frequencies used with each device [76], disparities in the measurement of bar movements in the 

horizontal plane [69], and method of calculating force and power through the differentiation of 

accelerations and velocities which can magnify errors seen in data acquisition [64]. 

CONCLUSIONS 

Our results suggest that even though systematic bias was present for the GYM assessment 

of PF and PP, the GYM is a valid field based device, which can accurately measure velocity, and 

is highly valid for the estimations of force. However, the GYM was problematic for the estimation 

of MP and PP at lighter loads in the back squat exercise. By comparison, the PUSH was able to 

accurately estimate PF at all relative intensities, and determine MV at light to moderate loads. 

However, the validity of the PUSH to measure anything other than PF in the back squat exercise 

performed across a spectrum of relative loads appears questionable. 

PRACTICAL APPLICATIONS 

The present study suggests practitioners should be cautious if prescribing/modifying 

sessional training loads or monitoring training adaptations for any variable other than PF using the 

PUSH, particularly at slower velocities. By comparison, the GYM, although not quite as sensitive 

as LAB testing methods, is highly valid and sensitive enough to be used as a tool to monitor 

training except for MP and PP at faster velocities.  
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CHAPTER 4: STUDY2 

RELIABILITY AND VALIDITY OF THE LOAD-VELOCITY 

RELATIONSHIP TO PREDICT THE 1RM BACK SQUAT 

Banyard HG, Nosaka K, & Haff GG. 

The Journal of Strength and Conditioning Research 

 

ABSTRACT 

Purpose: This study investigated the reliability and validity of the load-velocity relationship to 

predict the free-weight back squat 1RM. Seventeen strength-trained men performed three 1RM 

assessments on three separate days, 48 hours apart. Methods: All repetitions were performed to 

full depth with maximal concentric effort. Predicted 1RMs were calculated by entering the MV of 

the 1RM (V1RM) into an individualised linear regression equation, which was derived from the 

load-velocity relationship of 3 (20%, 40%, 60% 1RM), 4 (20%, 40%, 60%, 80% 1RM), or 5 (20%, 

40%, 60%, 80%, 90% 1RM) incremental warm-up sets. Results: The actual 1RM (140.3  27.2 

kg) was very stable between 3 trials (ICC = 0.99; SEM = 2.9 kg; CV = 2.1%; ES = 0.11). Predicted 

1RM from 5 warm-up sets up to and including 90% of 1RM was the most reliable (ICC = 0.92; 

SEM = 8.6 kg; CV = 5.7%; ES = -0.02) and valid (r = 0.93; SEE = 10.6 kg; CV = 7.4%; ES = 

0.71) of the predicted 1RM methods. However, all predicted 1RMs were significantly different (p 

≤ 0.05; ES = 0.71 – 1.04) from the actual 1RM. Individual variation for the actual 1RM was small 

between trials ranging from -5.6 to 4.8% compared to the most accurate predictive method up to 

90% 1RM, which was more variable (-5.5 to 27.8%). Importantly, the V1RM  (0.24  0.06 ms-1) 

was unreliable between trials (ICC = 0.42; SEM = 0.05 m.s-1; CV = 22.5%; ES = 0.14). 

Conclusions: The load-velocity relationship for the full depth free-weight back squat showed 

moderate reliability and validity but could not accurately predict 1RM, which was stable between 

trials. Thus, the load-velocity relationship 1RM prediction method used in this study cannot 

accurately modify sessional training loads due to large V1RM variability. 

  



43 

 

INTRODUCTION 

The 1RM assessment is a well-established, valid and reliable method of determining 

maximal strength [77, 78]. However, the overall time commitment associated with performing 

1RM assessments for large squads of team sport athletes can be problematic. In addition, maximal 

strength has been reported to change rapidly [13], and frequent testing can take valuable time away 

from training. Consequently, regression equations to estimate 1RM, utilising the maximum 

number of repetitions performed to concentric muscular failure with a sub-maximal load, have 

been established [79-82]. However, the accuracy of these equations may vary according to the 

type of exercise, amount of repetitions completed, gender, and training status [77, 83, 84]. 

Furthermore, if a strength coach wanted to frequently monitor changes in maximal strength using 

1RM prediction equations, the requisite sets performed to exhaustion may result in excessive 

fatigue, and diminish the force generating capacity in subsequent sets performed within the same 

training session leading to lower strength gains and power adaptations [9, 10, 32]. Therefore, an 

alternate less fatiguing method for determining an individual’s maximal strength is required.  

Due to the advancement in kinetic and kinematic transducer technologies it is now possible 

to accurately measure bar velocity [18, 31]. Specifically, three methods to quantify concentric 

movement velocity include PV, MPV, and MV [31, 32, 51, 85]. Importantly, even though peak 

concentric velocity is a pertinent measure for explosive type resistance training exercises such as 

bench throws and countermovement jumps, mean concentric velocity is believed to better 

represent the different velocities observed through the entire phase of non-aerial movements like 

the squat [10, 18, 23, 51, 86]. That being said, Sánchez-Medina, Pérez and González-Badillo [32] 

suggested that during non-aerial movements, mean concentric velocity underestimates the barbell 

movement velocity at lighter loads due to the need for an individual to decelerate the barbell 

velocity at the top of the lift in order to maintain balance. Instead, they suggest using mean 

propulsive velocity, which measures the average velocity during the concentric phase of a lift when 

acceleration of the barbell is greater than the acceleration due to gravity (propulsive phase) [32]. 

However, even though mean propulsive velocity has been shown to be a key variable in many 

studies [18, 31, 32, 51], it is also noted that it may add an unnecessary level of complexity to 

velocity measurements for strength and conditioning practitioners [18].  

During resistance training exercises, if repetitions are performed with maximal concentric 

effort and consistent displacement, heavier loads will be lifted at slower velocities than lighter 

loads. Furthermore, research has shown an inverse linear relationship exists between load and 

mean concentric velocity [23, 87]. As a result, it has been suggested that individualised linear 
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regression equations (using the load-velocity relationship) can be used to accurately predict the 

1RM [22]. Although helpful, the predicted 1RM findings from Jidovtseff et al. [23] were 

completed using a pause between the eccentric and the concentric portions of the bench press 

exercise performed on a Smith machine. Exercises utilizing the stretch shortening cycle (SSC) are 

known to produce greater amounts of concentric force, velocity, and power than exercises 

performed with a pause technique or concentric only exercises [88]. Therefore, the mean 

concentric velocity used in the load-velocity relationship to predict 1RM is likely to differ in free-

weight exercises compared to the back squat performed with a pause technique on a Smith 

machine. Furthermore, a traditional free-weight back squat with a barbell incorporates vertical and 

some horizontal movement [89]. However, a Smith machine back squat is performed with a 

vertical movement only. Thus, the combination of the Smith machine and pause squat technique 

would likely provide different results in the measurement of mean concentric velocity compared 

to the free-weight back squat. As a consequence, the results of Jidovtseff et al. [23] may not be 

applicable to strength training exercises performed with free-weights or without a pause between 

the eccentric and concentric portions of the lift. Moreover, since exercises utilising the SSC are 

more frequently performed and known to provide great transfer to performance tasks such as 

running and jumping [86, 88, 90], it is important to understand whether the load-velocity 

relationship can predict the 1RM in these types of exercises.  

Recently, a theoretical paper has suggested that the load-velocity relationship may be a 

useful tool for predicting the 1RM for the back squat exercise [22]. If the prediction was found to 

be precise, the movement velocity measured in sets performed during the warm-up of a strength 

training session could then be used to monitor any potential day-to-day variation in maximal 

strength that may occur when athletes are fatigued. Importantly, if the load-velocity relationship 

is sensitive enough to predict subtle changes in fatigued athletes the stability of its predictions 

must first be established in non-fatigued conditions when maximal strength is theoretically stable. 

Thus, for accurate sessional predictions of 1RM to occur the day-to-day variability of the 1RM 

and the MV at 1RM (V1RM) in a free-weight back squat must first be established. Such a finding 

could then help to determine whether V1RM could be used to predict changes in maximal strength 

throughout a season resulting in more accurately modified training loads. Therefore, the purpose 

of this study was to determine the reliability and validity of the load-velocity relationship to predict 

1RM. It is hypothesized that the load-velocity relationship will be valid and reliable for the 

prediction of 1RM, with the 90% prediction being the most valid and reliable of the prediction 

methods. 
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METHODS 

Experimental Design 

In this study, we investigated the reliability and validity of the load-velocity relationship to 

predict 1RM for the back squat. The load-velocity relationship was used to develop individualised 

linear regression equations utilising mean concentric velocity of three (20%, 40%, 60% 1RM), 

four (20%, 40%, 60%, and 80% 1RM), or five (20%, 40%, 60%, 80%, and 90% 1RM) incremental 

loads. As a consequence, the individualised 1RM prediction models based on three, four, or five 

sets were termed 60%, 80%, and 90%, respectively. Once the individualised regression equation 

was determined, the V1RM for that session was used in the regression equation to predict the 1RM 

(Figure 13). 

 

 

Figure 13. Predicted 1RM from the load–velocity relationship based on 20–60% of 1RM (A), 

20–80% of 1RM (B), 20–90% of 1RM (C) of a typical sample. For this case, the predicted 1RM 

was 191.2 kg (A), 186.3 kg (B) and 184.8 kg (C), respectively. 

 

Participants   

Seventeen healthy male resistance-trained volunteers were recruited for this study (age: 25.4 

± 3.3 y, height: 181.6 ± 6.4 m, body mass: 81.8 ± 9.9 kg). All subjects were free from any 

musculoskeletal injuries, able to perform the full depth back squat with at least 1.5 times their 

body mass, and had 5.9 ± 2.9 years of resistance training experience, which ranged from 1 to 10 

years. The subject’s average 1RM back squat, 1RM to body mass ratio, and peak knee flexion 

angle at the bottom of the squat were: 140.3 ± 27.2 kg, 1.71 ± 0.16 kg.kg-1, and 121.2 ± 10.9° 

respectively. All volunteers read and signed informed consent forms prior to participation in the 

present study in accordance with the ethical requirements of Edith Cowan University Human 

Research Ethics Committee.  
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Figure 14. Experimental protocol. Session 1, Trial 1, 2, and 3 each comprised a 1RM assessment 

separated by 48 hours. 

 

Experimental Procedure 

All subjects performed four 1RM assessments with each trial separated by 48 hours (Figure 

14). The initial 1RM assessment performed in the familiarization session was not included in the 

analyses of this study but was conducted so that accurate relative 1RM loads could be lifted for 

the remaining three 1RM sessions (trials 1, 2, and 3). In session 1, subjects were informed of the 

testing procedures and had their height, body mass, safety rack height and barbell rack height 

recorded. They then completed all required documentation, which was then followed by the initial 

1RM assessment. 

One-Repetition Maximum (1RM) Assessment  

The 1RM assessments were performed in a custom-built power cage (Fitness Technology, 

Adelaide, Australia) using a 20-kg barbell (Eleiko®; Halmstad, Sweden). As shown in Figure 2, 

at the commencement of session 1 and each trial, the subjects performed a warm-up procedure 

consisting of five minutes pedalling on a cycle ergometer (Monark 828E cycle ergometer; 

Vansbro, Dalarna, Sweden) at 100 W at 60 revolutions per minute, three minutes of dynamic 

stretching, followed by a squat protocol comprising three repetitions at 20% 1RM, three repetitions 

at 40% 1RM, three repetitions at 60% 1RM, one repetition at 80% 1RM and one repetition at 90% 
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1RM (the load at each relative intensity was estimated for the initial 1RM assessment). The 

selection of multiple repetitions at 20%, 40%, and 60% 1RM was to establish a reliable MV 

without inducing fatigue as suggested by previous research [23]. For the repetitions performed at 

20%, 40%, and 60% 1RM the highest mean concentric velocity was selected for analysis providing 

full depth was achieved, which is accordance with previous research [23]. For each 1RM 

assessment a maximum of five 1RM attempts were permitted which did not include the 

submaximal warm-up repetitions performed up to and including 90% 1RM. In consultation with 

each subject, following a successful 1RM attempt the barbell weight was increased between 0.5 

and 2.5 kg until no further weight could be lifted. Rest periods comprised passive recovery of two 

minutes between warm-up sets and three minutes between 1RM attempts.  

In the familiarization session a goniometer was used to measure knee angle at the bottom of 

the squat, which corresponded to a specific barbell depth that was recorded on a LabView analysis 

program. The barbell depth at full knee flexion was then monitored for each repetition by visual 

displacement curves on the LabView analysis program to ensure the same barbell depth was 

maintained throughout the assessments [19]. For each squat repetition, subjects were instructed to 

perform the eccentric phase in a controlled manner until full knee flexion was achieved. Once the 

eccentric phase was completed the subject was told to immediately perform the concentric phase 

as fast and explosively as possible (with the assistance of verbal encouragement) in order to utilize 

the SSC. Importantly, the barbell was placed in a high bar position on the superior aspect of the 

trapezius muscle and had to remain in constant contact with the shoulders while the feet were 

required to maintain contact with the floor. The heel and toe locations of each participant were 

recorded on the force plate using a one cm intersecting vertical-horizontal grid and the same 

position was maintained for every trial. 

Data Acquisition 

Barbell displacement and mean concentric velocity were monitored by four fixed position 

transducers (Celesco PT5A-250; Chatsworth, California, USA), which were mounted to the top of 

the power cage and attached to the side of the barbell [19]. The concentric phase of each repetition 

commenced at the point of maximal displacement (greatest descent) and terminated at zero 

displacement (standing). The position transducer data were collected via a BNC-2090 interface 

box with an analogue-to-digital card (NI-6014; National Instruments, Austin, Texas, USA) and 

sampled at 1000 Hz. In addition, the position transducer data were collected and analysed using a 

customised LabVIEW program (National Instruments, Version 14.0). All signals were filtered 
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with a 4th order-low pass Butterworth filter with a cut-off frequency of 50 Hz. The four transducers 

had a total retraction tension of 23.0 N, which was accounted for in all calculations.  

Statistical Analyses 

For trials 1, 2 and 3, individualised regression equations to predict 1RM were analysed using 

Excel Software (Microsoft; Redmond, Washington, USA). A Shapiro-Wilk test of normality was 

performed and indicated that all data were normally distributed (p > 0.05). Reliability of the 1RM, 

predicted 1RMs, and V1RM was determined from the magnitude of the intraclass correlation 

coefficient (ICC), SEM, CV, and the ES [74]. Similarly, validity of the predicted 1RMs compared 

with the actual 1RM was assessed from the magnitudes of the Pearson product moment correlation 

(r), SEE, CV, and the ES [74]. The magnitude of the ES (Cohen’s d) was considered trivial (<0.2), 

small (0.2 – 0.59), moderate (0.60 – 1.19), large (1.2 –1.99) or very large (>2.0) [75]. In addition, 

the strength of the correlations was determined using the following criteria: trivial (< 0.1), small 

(0.1 – 0.3), moderate (0.3 – 0.5), high (0.5 – 0.7), very high (0.7 – 0.9), or practically perfect (>0.9) 

[71]. Fisher’s r to z transformation analysis was used to ascertain significant differences between 

1RM and predicted 1RM. Magnitude of CV was based on the following parameters: poor (>10%), 

moderate (5 – 10%), or good (<5%) [73]. Confidence limits were set at 95% for all reliability and 

validity analyses. Finally, 1RM comparisons for reliability and validity were also assessed using 

repeated measures analysis of variance with a type-I error rate set at  < 0.05, and Tukey post hoc 

comparisons utilized where appropriate (IBM SPSS version 22.0, Armonk, New York, USA).  

 

Figure 15. Individual variation of 1RM and predicted 1RMs between trials. The shaded bars 

indicate the group mean for that trial. *Significant difference between 1RM and predicted 1RM 
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up to 90%, 80%, and 60% 1RM; #Significant differences between the 90% and 60% 1RM 

predictions. 

 

RESULTS 

Reliability 

No significant differences were seen between trials 1, 2, and 3 for the 1RM (140.7 ± 26.9 

kg, 139.7 ± 27.8 kg, 140.4 ± 27.0 kg, p > 0.05), and 1RM predictions based on the submaximal 

measures up to 90% (159.7 ± 28.8 kg, 160.6 ± 24.7 kg, 158.8 ± 27.9 kg, p > 0.05), 80% (162.3 ± 

28.3 kg, 163.3 ± 23.7 kg, 161.4 ± 29.6 kg, p > 0.05), and 60% (168.4 ± 27.3 kg, 170.6 ± 22.7 kg, 

170.6 ± 34.5 kg, p > 0.05) (Figure 15). Individual variation ranges between trials for the 1RM (-

5.6 to 4.8%) and 90% (-10.7 to 10.8%), 80% (-20.9 to 23.5%), and 60% (-22.0 to 35.8%) 1RM 

predictions are shown in Figure 15. ICC’s for the 1RM (0.99), and 90% (0.92), 80% (0.87), and 

60% (0.72) 1RM predictions were practically perfect, very high, and high, respectively (Figure 

16C). Furthermore, a Fisher r to z transformation revealed no significant differences (p > 0.05) for 

the correlations between trials for the 1RM and predicted 1RMs. Interestingly, the 1RM was very 

stable between trials with a small SEM (2.9 kg) and good CV (2.1%), in addition to a trivial ES (d 

= 0.03), as seen in Figure 16. However, for the 90%, 80% and 60% 1RM predictions, there was a 

moderate to large SEM (8.6, 11.1, 16.8 kg), moderate to poor CVs (5.7, 7.2, 12.2%), but trivial 

ESs (-0.02, -0.05, -0.05), respectively. Lastly, the SEM (0.05 ms-1) and CV (22.5%) for the V1RM 

(0.24  0.06 ms-1) were large and poor between trials although the ICC (0.42) was moderate, along 

with a trivial ES (d = 0.143).  

Validity 

All 1RM predictions were significantly different (p < 0.001) to the 1RM for all trials (Figure 

15 & 18). Compared to the 1RM, there was considerable individual variation for the 90% (-5.5 to 

27.8%), 80% (-12.3 to 29.4%), and 60% (-5.5 to 47.6%) 1RM predictions (Figure 15). 

Interestingly, the Pearson correlations for the predicted 1RMs up to 90% (r  = 0.93), 80% (r = 

0.87), and 60% (r = 0.78) were practically perfect or very high, as seen in Figure 17C. However, 

comparison of these correlations using Fisher’s r-to-z transformation revealed that all three 

correlations were significantly different (p < 0.001) from the 1RM. In addition, the SEE revealed 

large absolute errors (10.6 kg, 12.9 kg, 17.2 kg), and moderate to poor CVs (7.4%, 9.1%, 12.8%) 

for the 90%, 80%, and 60% 1RM predictions, respectively (Figure 17A & 17B). The ES for the 
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magnitude of 1RM predictions ranged from 0.71 to 1.04, as seen in Figure 17D, indicating all 

1RM predictions were moderately different to the 1RM. 

 

DISCUSSION 

The main finding of the present study was that in strength-trained subjects, the load-velocity 

relationship was not reliable and valid enough to accurately predict maximal strength for the free-

weight back squat exercise over three trials, which did not support our hypothesis. Essentially, the 

V1RM used in the load-velocity relationship to predict 1RM was too variable (CV = 22.5%) between 

sessions. However, as expected, the load-velocity relationship was more accurate when lifts were 

performed at higher loads that more closely approached the actual 1RM, yet the predictions were 

still significantly different from the 1RM. The concept of greater accuracy at higher loads is well 

documented in the 1RM prediction literature [48]. For example, Mayhew et al. [91] reported the 

accuracy of repetition to failure methods of 1RM prediction were enhanced when higher loads 

were lifted. However, the need to obtain velocities at intensities that are close to 1RM for accurate 

sessional 1RM predictions defeats the rationale of employing the load-velocity relationship 

method, since its suggested purpose is to accurately predict 1RM and avoid frequent maximal 

testing [22]. As a result, this study suggests that if the V1RM is applied in the linear regression 

equation to predict maximal 1RM, the load-velocity relationship cannot accurately predict daily 

or training session specific 1RM for the free-weight back squat exercise. 
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Figure 16. Reliability between trials of the 1RM and predicted 1RM up to 60%, 80%, and 

90%1RM. Forest plots displaying: (A) SEM standard error of the measurement, (B) CV Coefficient 

of variation, (C) ICC intraclass correlation coefficient, and (D) the ES effect size estimates. Error 

bars indicate 95% confidence limits of the mean difference between trials. 

 

The present study revealed that subjects who could lift at least 150% of their body mass were 

reliable at the back squat 1RM assessment as noted by the practically perfect correlation (ICC = 

0.99), low measurement error (SEM = 2.9 kg; CV = 2.1%), and small individual variation (-5.6 to 

4.8%) between trials. Interestingly, the 1RM reliability data in our study was similar to the 

correlation (ICC = 0.97), measurement error (SEM = 2.5 kg) and individual variation (-6.7 to 

9.1%) between trials reported by Comfort and McMahon [24]. However, our investigation 

revealed that all predicted 1RMs were less reliable than the actual 1RM, evidenced by greater 

differences in the reliability analyses including the correlation (ICC), and measurement error 

(SEM and CV). If the load-velocity relationship were to be considered as a valid method to modify 

sessional training loads, the 1RM predictions would need to mimic the reliability statistics of the 

actual 1RM. Most notably, 1RM predictions would need to have practically perfect correlation, 
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trivial ES, small error of measurement and low CV, but these were not observed in the present 

study.  

 

 

Figure 17. Validity of the predicted 1RM up to 60%, 80, and 90%1RM compared with 1RM. Forest 

plots displaying: (A) SEE standard error of the estimate, (B) CV Coefficient of variation, (C) 

Pearson correlation coefficient, and (D) the ES effect size estimates. Error bars indicate 95% 

confidence limits of the mean difference between 1RM and predicted 1RM. 

 

Importantly, comparisons of the validity correlation data using Fisher’s r-to-z transformation 

analysis revealed all predicted 1RMs significantly overestimated (p < 0.05) the actual 1RM. 

Therefore, the load-velocity relationship was unable to accurately predict maximal strength for the 

free-weight back squat exercise. This was further evidenced by large errors (SEE = 10.6 - 17.2 

kg), moderate to poor CVs (7.4 - 12.8%), and moderate ESs (0.74 - 1.09). Consequently, if the 

load-velocity relationship cannot accurately predict a stable 1RM across three trials then it is 

unlikely to predict sessional training loads according to daily readiness. Interestingly, slightly 

lower correlations and higher measurement errors (SEE) were observed in the present 

investigation compared with the findings of two other 1RM prediction studies [23, 87]. 
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 Jidovtseff and colleagues [23] combined the data from three studies, culminating in 112 

subjects (including 22 female) of recreational training status (1RM to body mass ratio = 0.85) 

performing concentric only bench press 1RM on a Smith machine. They then examined the linear 

regression equations, made from three or four sets performed up to 80%, 90%, or 95% 1RM, and 

analysed the relationship between bench press 1RM and the load at zero velocity (LD0). They 

found an almost perfect correlation (r = 0.98), yet noted a moderate measurement error (SEE = 

7%). Similarly, Bosquet et al. [87] examined the validity of the force-velocity relationship 

(employing an undisclosed algorithm) to predict bench press 1RM. They had 27 participants (5 

female) of recreational training status (1RM to body mass ration = 0.87) perform the bench press 

1RM on a Smith machine with a four second pause between eccentric and concentric phases. 1RM 

predictions were taken from an average of four trials that were performed until power decreased 

(approximately 48% of 1RM) during two consecutive loads. They reported a practically perfect 

correlation (r = 0.93), which aligned closely with the correlations found in the present study, and 

a measurement error of 9% (SEE). Although helpful, the practical usefulness of the findings from 

the two aforementioned studies is perhaps limited.  

For example, the kinetic and kinematic data collected from exercises performed on a Smith 

machine are specific to that particular machine given the conceivable variation in barbell mass, 

angle of bar path and frictional forces between equipment. Moreover, even though pause and 

concentric only contractions minimise measurement error in concentric movement velocity [82], 

1RM predictions using the pause or concentric only method provide limited ecological validity, as 

they do not reflect a true free-weight 1RM technique (no pause between eccentric and concentric 

phases), which utilises the SSC. Strength-training exercises incorporating the SSC are popular 

among athletes and are known to produce greater force than concentric only contractions [88]. 

Consequently, exercises incorporating the SSC can result in greater enhancement of performance 

tasks such as running and jumping. Therefore, to ensure ecological validity, if training with 

exercises utilising the SSC, the 1RM assessment (used to program relative intensities) must also 

incorporate the SSC. Furthermore, the pause or concentric only 1RM assessment would likely 

produce a lower 1RM load than a free-weight 1RM assessment. Consequently, it is likely the 

training adaptations would be compromised if one were to prescribe training intensity, for an 

exercise utilising the SSC, based off a pause or concentric only 1RM assessment.  
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Figure 18. The average absolute difference between the 1RM and predicted 1RMs up to 60%, 

80%, and 90%1RM. 

 

Another major finding in the present study was the greater individual variability of predicted 

1RM when fewer sets were used for the estimation. This is in agreement with the findings of 

Jidovtseff et al. [23] who suggested that differences between the lightest and heaviest loads used 

for prediction should exceed 0.5 ms-1. Moreover, the large variability between trials of the V1RM 

also enhanced the measurement error in the predicted 1RMs for the free-weight back squat. In 

contrast, another study found the V1RM was reliable for the 1RM back squat when a four second 

pause was incorporated between the eccentric and concentric phase [51]. Although rest/pause or 

concentric only assessments may not provide perfect ecological validity for exercises 

incorporating the SSC, they have been shown to provide reliable movement velocities at 

submaximal and maximal intensities [31, 51]. It is well established that if maximum effort is 

provided on the concentric phase of a lift, the associated movement velocity will decrease as 

fatigue ensues [18]. Therefore, isoinertial assessments using a pause or concentric only method 
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maybe beneficial as a fatigue monitoring tool by quantifying changes in MV for a given relative 

load. 

When examining the findings of the present study the lack of ability to accurately and 

reliably predict 1RM on a daily basis with the use of velocity measures calls into question the 

theoretical model presented by Jovanovic and Flanagan [22]. Specifically, Jovanovic and Flanagan 

[22] suggested that the use of daily predictions of maximal strength could be made from the 

measurement of barbell velocity and training loads could then be adjusted based upon the predicted 

maximums in order to account for the athlete’s current fatigue status. However, the present study 

clearly shows that in a recovered state the prediction of 1RM is highly variable when using velocity 

and results in a systematic over-estimation of the actual 1RM (Figure 18). As such, it is highly 

likely that when athletes are fatigued, further variability will be noted.  Therefore, based upon the 

present study it is not recommended to use 1RM predictions as a tool for adjusting training loads 

to account for fatigue status.  However, it is likely that sound periodization methods, such as 

incorporating heavy and light training days will appropriately account for the changing status of 

the athlete. For example, traditional periodization literature recommends adjusting training loads 

by 5 – 10% across the training week to account for accumulative fatigue [85]. Interestingly, this 

classic recommendation for modulating intensity between heavy and light resistance training days 

would account for the 2.1% CV noted in the present study and allow for adjustments in training 

load according to daily fatigue.   

Crucially, the findings of the present study regarding the 1RM prediction method (calculated 

by entering the V1RM into a linear regression equation) are limited to the free-weight back squat 

exercise performed to full depth with a relatively homogenous strength-trained population. 

Moreover, even though we acknowledge this method was not accurate enough to predict 1RM, it 

does not necessarily mean that all approaches using the load-velocity relationship would fail. 

Future studies may look to determine whether the accuracy of 1RM predictions in free-weight 

exercises can be improved by using alternative non-linear regression models or other variables 

such as PV or MPV. In addition, it is not well understood whether the accuracy of 1RM predictions 

is affected by exercise selection, age, gender, or training status.  

 

CONCLUSIONS 

Based on the results of the present study, it appears the load-velocity prediction of the free-

weight back squat 1RM performed to full depth is moderately reliable and valid but not accurate 

enough to predict maximal strength on a daily basis. This was primarily due to the poor reliability 
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of the V1RM. Consequently, performing sessional 1RM predictions to track changes in maximal 

strength and adjust sessional training loads according to daily readiness appears unlikely. 

However, if training for maximal strength gains, the variation in velocity may not matter providing 

maximal effort is given through the concentric phase of the lift. Furthermore, fluctuating the 

training intensity using sound periodisation could also account for daily readiness. Although, if an 

individual is performing power-based training where specific velocities are to be achieved then 

sessional adjustment of load by monitoring velocity maybe useful.  

 

PRACTICAL APPLICATIONS 

It is important to note the practical applications that stem from this work, most notably, even 

though the load-velocity relationship up to 90% of 1RM only provides a moderate estimation of 

1RM, it holds similar validity to other predicted 1RM methods. However, for programming 

purposes, strength-trained individuals are recommended to periodise relative loads from a periodic 

1RM assessment and account for daily readiness or envisaged fatigue by systematically modifying 

volume or intensity in accordance with periodization strategies and athlete monitoring programs. 

Future studies using free-weight exercises may monitor changes in movement velocity at relative 

submaximal loads to modify training sessions, but this has yet to be established as a reliable 

method of monitoring training loads in free-weight exercises. 
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CHAPTER 5: STUDY 3 

THE RELIABILITY OF INDIVIDUALISED LOAD-VELOCITY 

PROFILES 

Banyard HG, Nosaka K, Vernon A, & Haff GG. 

International Journal of Sports Physiology and Performance 

 

ABSTRACT 

Purpose: This study examined the reliability of PV, MPV, and MV in the development of LVPs 

in the full depth free-weight back squat performed with maximal concentric effort. Methods: 

Eighteen resistance-trained men performed a baseline 1RM back squat trial and three subsequent 

1RM trials used for reliability analyses, with 48-hours interval between trials. 1RM trials 

comprised lifts from six relative loads including 20%, 40%, 60%, 80%, 90%, and 100% 1RM. 

individualised LVPs for PV, MPV, or MV were derived from loads that were highly reliable based 

on the following criteria: ICC >0.70, CV ≤10%, and Cohen’s d ES <0.60. Results: PV was highly 

reliable at all six loads. Importantly, MPV and MV were highly reliable at 20%, 40%, 60%, 80% 

and 90% but not 100% 1RM (MPV: ICC = 0.66, CV = 18.0%, ES = 0.10, SEM = 0.04 ms-1; MV: 

ICC = 0.55, CV = 19.4%, ES = 0.08, SEM = 0.04 ms-1). When considering the reliable ranges, 

almost perfect correlations were observed for LVPs derived from PV20-100% (r = 0.91-0.93), 

MPV20-90% (r = 0.92-0.94) and MV20-90% (r = 0.94 - 0.95). Furthermore, the LVPs were not 

significantly different (p > 0.05) between trials, movement velocities, or between linear regression 

versus second order polynomial fits. Conclusions: PV20-100%, MPV20-90%, and MV20-90% are 

reliable and can be utilized to develop LVPs using linear regression. Conceptually, LVPs can be 

used to monitor changes in movement velocity and employed as a method for adjusting sessional 

training loads according to daily readiness. 
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INTRODUCTION 

Resistance training intensity is typically derived from a percentage of an actual or estimated 

1RM assessment [8]. Once a 1RM load is determined, a strength coach can periodise the relative 

intensity of the training sessions to maximize adaptation and allow for recovery [85]. Although 

this method is relatively simple and requires no monitoring equipment, an athlete’s maximal 

strength can increase rapidly [13], suggesting that continued prescription of relative loads from a 

baseline 1RM could compromise adaptation. Alternatively, an athlete who may be excessively 

fatigued for a prescribed training session is still required to lift a load, which may exacerbate 

fatigue and prolong recovery time. Therefore, it is necessary to establish a more precise and less-

demanding method of monitoring athlete’s training that can be used to modify exercise intensity 

when necessary. 

Research has demonstrated an inverse linear relationship exists between load and velocity 

(load-velocity profile [LVP]), meaning that if maximal effort is given for the concentric phase of 

a lift, heavier loads cannot be lifted with the same velocity as lighter loads [23, 31, 53, 66, 87]. 

Furthermore, if maximal concentric effort is provided within a training set for a consistent range 

of motion, velocity will decline as concentric muscular fatigue ensues [18]. Currently, it is not 

known what occurs to movement velocity between training sessions when an athlete is fatigued in 

non-ballistic type exercises such as the barbell back squat. It is hypothesized that when an athlete 

is fatigued they may perform repetitions with reduced movement velocity compared to their non-

fatigued velocity. However, in order to monitor training induced changes in movement velocity, 

the reliability of movement velocity used to develop LVPs needs to be established. This is critical 

for a coach who needs to differentiate between true changes in their athlete’s movement velocity 

as a result of fatigue or training induced adaptation, and not just the typical error observed between 

training sessions.  

Previous studies have established LVPs for the prone pull-up, bench press, leg press, half 

squat, and full squat exercises [31, 51, 54]. The LVP regression equations reported by Conceição 

et al. [51] and Gonzalez-Badillo et al. [31] were obtained from the group mean of  15 and 56 

subjects, respectively. It is important to discern that different athletes can produce unique 

movement velocities based on individual characteristics such as their limb biomechanics and 

expression of fibre types [92, 93]. Therefore group mean LVP equations may not be appropriate 

for accurate monitoring of individual athletes who generate faster or slower movement velocities 

than the group mean. Notably, Conceição et al. [51] and Gonzalez-Badillo et al. [31] did not report 

the baseline test/re-test reliability of movement velocity used to develop the LVPs of the subjects. 
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Therefore, it is difficult to establish the exact significance of their findings since the typical 

variation in movement velocity between testing sessions was not reported for their subjects in a 

non-fatigued state. However, a key finding from these studies was that LVPs are exercise specific. 

With this in mind, it is important to note that Conceição et al. [51] and Gonzalez-Badillo et al. [31] 

had subjects perform repetitions on a weight machine or Smith machine with a 3-4 second pause 

between the eccentric and concentric phase of the maximal effort concentric contractions (pause 

method). Conceição et al. [51] suggest the pause between eccentric and concentric phases can 

minimize measurement error by removing the influence of the SSC from the concentric 

contraction. Although the findings of the two aforementioned studies are valuable, it is possible 

that their results are not ecologically valid with free-weight exercises utilizing the SSC that also 

involve vertical and some horizontal barbell movements [89]. This is important to discern since 

exercises performed in a free-weight manner utilizing the SSC are more popular among athletes 

and have been shown to have greater transfer of training effects to sports performance compared 

to concentric only contractions, particularly in more complex multi-joint exercises [88, 90]. While 

studies examining the LVP to monitor training appear promising, no previous study has assessed 

the reliability of movement velocity used in LVPs when individuals are in a non-fatigued state 

across multiple assessments for a free-weight squat exercise.  

Three methods are often employed to quantify concentric movement velocity, which include 

PV, MPV, and MV [31, 51, 85]. MPV has recently been popularized and has been utilized in the 

aforementioned load-velocity profiling studies for the pull-up, bench press, leg press, half squat, 

and full squat exercises [31, 51, 54]. In addition to utilizing MPV, Gonzalez-Badillo et al. [31] 

employed second-order polynomial regression over linear regression to improve the strength of 

the correlations for the LVPs. Despite the continued use of MPV, many velocity measurement 

tools quantify PV and MV but do not report MPV. Thus, the use of MPV and polynomial 

regression equations may add an unnecessary level of complexity to data analysis for strength and 

conditioning practitioners. However, it is not known whether MPV or the use of polynomial 

regression is necessary to develop reliable LVPs in free-weight exercises. Therefore, the purpose 

of this study was to investigate the reliability of PV, MPV and MV to develop LVPs and determine 

whether more complex polynomial regression is necessary to improve the relationship between 

load and velocity in a free-weight exercise. 
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METHODS 

Participants 

Eighteen resistance-trained male volunteers participated in this study (age: 27.2 ± 4.1 y, 

height: 180.2 ± 6.1 cm, body mass: 80.5 ± 8.7 kg). Subjects were able to perform the full back 

squat with at least 1.5 times their body mass, had at least six months of resistance training 

experience, were familiarized with the 1RM assessment and were free from musculoskeletal 

injuries. Each subject was provided with information regarding the study, completed a medical 

questionnaire and gave written informed consent prior to volunteering for this study in accordance 

with the ethical requirements of Edith Cowan University Human Research Ethics Committee and 

the Code of Ethics of the World Medical Association (Declaration of Helsinki). Subjects height, 

body mass, squat depth (knee angle) and barbell rack height were recorded, which was followed 

by a baseline 1RM assessment. Peak knee flexion angle at the bottom of the squat, average 1RM 

back squat, and 1RM to body mass ratio were: 122.6 ± 11.4°, 142.3 ± 28.3 kg, and 1.74 ± 0.21, 

respectively.  

 

Experimental Design 

The present study incorporated three 1RM trials to investigate the reliability of PV, MPV, 

and MV at 20%, 40%, 60%, 80%, 90% and 100% 1RM in the full depth back squat exercise. 

Subjects were required to wear the same footwear to each session and had their own testing 

sessions conducted at the same time of day on every occasion. No lifting belts or straps were used 

for this study. They reported to the laboratory on four occasions, which included a familiarization 

session (baseline 1RM assessment) and three subsequent 1RM trials with 48 hours between 

sessions. Previous research has shown that 24 or 48 hours is sufficient time for individuals to 

recover from a 1RM back squat [66, 78]. The baseline 1RM assessment was performed so that 

accurate relative intensities from 1RM could be lifted in the remaining three 1RM trials. Values 

of PV, MPV and MV were collected from all repetitions in the three 1RM trials and used for the 

reliability analysis.  

 

Experimental Procedure 

Prior to each 1RM assessment the subjects performed a warm up protocol comprising of 

cycling on an ergometer for five minutes (Monark 828E cycle ergometer; Vansbro, Dalarna, 

Sweden) at 60 revolutions per minute and 60 W, dynamic stretching for three minutes, followed 
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by the 1RM assessment. 1RM assessments consisted of five sets pertaining to 20% (3-repetitions), 

40% (3-repetitions), 60% (3-repetitions), 80% (1-repetition), and 90% 1RM (1-repetition), which 

was followed by the first 1RM attempt [66]. The highest MV value of the three repetitions 

performed at 20%, 40%, and 60% 1RM, for each set was chosen for reliability analysis. Five 1RM 

attempts were allowed with three minutes passive recovery permitted between sets. All repetitions 

were performed in a custom-built power cage (Fitness Technology, Adelaide, Australia) using a 

20 kg barbell (Eleiko®; Halmstad, Sweden). Between 0.5 and 2.5 kg was added to the barbell 

weight after successful 1RM attempts until no further weight could be lifted with correct 

technique. For each repetition, subjects had to achieve a pre-determined squat depth established 

from their familiarization session. This was completed by measuring the knee angle at the bottom 

of the squat using a goniometer, which corresponded to a specific barbell displacement depth that 

was recorded on a LabVIEW analysis program (National Instruments, version 14.0) [19, 66, 67, 

94]. Each repetition was monitored by visual displacement curves to ensure the equivalent barbell 

depth was maintained. Each repetition required subjects to descend (eccentric phase) in a self-

selected controlled manner until full knee flexion was achieved then immediately perform the 

ascending phase (concentric phase) as rapidly as possible while the subjects feet remained in 

constant contact with the floor and the barbell in constant contact with the superior aspect of the 

trapezius muscle. 

 

Data Acquisition 

Four fixed position transducers (Celesco PT5A-250; Chatsworth, California, USA) 

monitored the barbell displacement and velocity data, which was then collected via a BNC-2090 

interface box with an analogue-to-digital card (NI-6014; National Instruments, Austin, Texas, 

USA) and sampled at 1000 Hz [19, 67, 94]. Data were then collected and analysed using a 

customized LabVIEW program with signals filtered with a 4th order-low pass Butterworth filter 

and a cut-off frequency of 50 Hz. Total retraction tension of the position transducers equated to 

23 N, which was factored into all calculations. Each transducer was mounted to the top of the 

power cage and attached to the side of the barbell. In accordance with previous research, 4 LTs 

were utilized to quantify both vertical and horizontal movements from both sides of the barbell 

and establish a more accurate central displacement position [19, 67, 70, 94]. The eccentric phase 

of each repetition commenced at zero displacement (standing) and was completed at maximal 

displacement (greatest descent) whereas the concentric phase began at maximal displacement and 

terminated at zero displacement. PV was the maximum value of the velocity data collected during 
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the concentric phase of the repetition. MPV was determined as the average velocity of the 

concentric phase when acceleration of the barbell was greater than acceleration due to gravity [32]. 

MV was calculated as the average of the velocity data during the concentric contraction. 

 

Statistical Analyses 

Reliability of PV, MPV and MV at each relative intensity (20%, 40%, 60%, 80%, 90%, and 

100% 1RM) was determined from the magnitude of the ICC, CV, and the ES. This study 

considered the criterion variables highly reliable if they met the following three criteria: very high 

correlation (>0.70) [66, 71], moderate CV (10%) [66, 72], and a small ES (<0.60) [66, 95]. The 

smallest detectable difference (SDD), interpreted as the smallest measurement change that 

corresponds to a real difference beyond zero for PV, MPV and MV, was calculated as: 

SDD = 1.96 x 2 x SEM 

where SEM is the standard error of the measurement [96, 97], which was also reported. 

Relationships between relative load and velocity (LVP) were studied by fitting linear regression, 

and second order polynomials to the data. The strength of the LVPs was assessed using Pearson 

product moment correlation (r) analysis. Fisher’s r to z transformation analysis was used to 

ascertain significant correlation differences [98]: for PV, MPV and MV at each relative intensity 

between the three 1RM trials; between the LVPs developed from PV, MPV and MV; between the 

linear regression and second-order polynomial fitted LVPs. Confidence intervals were set at 95% 

for all reliability analyses. Data are reported as mean  SD unless stated otherwise. 

 

RESULTS 

Group mean values over three 1RM trials for PV, MPV and MV at 20%, 40%, 60%, 80%, 

90%, and 100% 1RM are presented in Figure 19. Test-retest reliability was high for the group’s 

1RM assessments (ICC = 0.99; CV = 2.0%; SEM = 2.6 kg; ES = 0.05). An inverse linear 

relationship was observed with the movement velocities except for MPV and MV at 100% 1RM, 

which was substantially lower than the linear trend of the velocities between 20% and 90% 1RM.  

PV was highly reliable at all relative intensities, but MPV and MV were highly reliable for 

all relative intensities except for 100% 1RM (Figure 20). The low reliability observed at 100% 

1RM was due to low correlations (MPV: ICC = 0.66; MV: ICC = 0.55) and poor CVs (MPV: CV 

= 18.0%; MV: CV = 19.4%). As seen in Table 1, SDD values for PV were the highest of the three 

movement velocities. In addition, the SDD for MPV were slightly higher than MV.  
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The group means at 100% 1RM for PV, MPV and MV across the three trials were 0.84 ± 

0.13 ms-1, 0.26 ± 0.06 ms-1 and 0.24 ± 0.05 ms-1, respectively (Figure 21). The group mean 

movement velocities in trials 1 (PV: 0.84 ± 0.14 ms-1; MPV: 0.26 ± 0.07 ms-1; MV: 0.24 ± 0.07 

ms-1), 2 (PV: 0.82 ± 0.14 ms-1; MPV: 0.26 ± 0.07 ms-1; MV: 0.24 ± 0.07 ms-1), and 3 (PV: 0.83 

± 0.13 ms-1; MPV: 0.25 ± 0.06 ms-1; MV: 0.24 ± 0.04 ms-1) were almost identical at 100% 1RM 

(Figure 21), yet the individual subject variation ranges between the three trials was moderate for 

PV (-10.8 to 12.2%) and extremely large for MPV (-34.8 to 41.0%) and MV (-36.3 to 32.5%).  

Based on the reliability results from Figure 20 we created LVPs from relative intensities that 

were highly reliable. The LVPs included PV from 20 – 100% 1RM, while MPV and MV were 

created utilizing 20 – 90% 1RM (Figure 22). Once the LVPs were created we then fitted the 

velocity data with linear and second-order polynomial fits to determine if the added complexity 

was necessary to improve the correlations (accuracy) of the LVPs (Figure 22). Correlation ranges 

for the individualised linear regression LVPs (PV: r = 0.89 – 0.99; MPV: r = 0.90 – 0.99; MV: r 

= 0.90 – 0.99) and individualised polynomial regression LVPs (PV: r = 0.89 – 0.99; MPV: r = 

0.90 – 0.99; MV: r = 0.91 – 0.99) were almost perfect. The Fisher r to z transformation revealed 

no significant differences for the correlations between the individualised linear and polynomial 

regression fits in trials 1, 2, or 3 for PV, MPV and MV. Furthermore, there were no significant 

differences between the correlations for the LVPs derived from the three different movement 

velocities. 
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Figure 19. Group mean (SD) values from three 1RM trials for PV, MPV, and MV at 20%, 40%, 

60%, 80%, 90%, and 100%1RM load. Abbreviations: 1RM, 1-repetition maximum; PV, peak 

velocity; MPV, mean propulsive velocity; MV, mean velocity. 

 

DISCUSSION 

The results of the present study advocate that PV was highly reliable at all six relative 

intensities tested including 100% 1RM. Similarly, MPV and MV were highly reliable at 20%, 

40%, 60%, 80%, and 90% but not 100% 1RM. This suggests that all three-movement velocity 

types are acceptable to monitor changes in movement velocity (fatigue monitoring) for the free-

weight squat exercise; however, a coach should not incorporate the movement velocity at 100% 

1RM if the LVPs are created from MPV or MV. Moreover, there was no difference between the 

correlations of LVPs using linear regression or second-order polynomial fits. 



65 

 

 

Figure 20. Reliability of PV, MPV, and MV in the back squat at 20%, 40%, 60%, 80%, 90%, and 

100% 1RM. Forest plots displaying ICC (A), CV (B), ES estimates (C), and SEM (D). Gary-shaded 

area indicates the zone of acceptable reliability. Error bars indicate 95% confidence limits. Right 

y-axes contain the mean and 95% confidence limits. Abbreviations: PV, peak velocity; MPV, mean 

propulsive velocity; MV, mean velocity; 1RM, 1-repetition maximum; ICC, intraclass correlation 

coefficient; CV, coefficient of variation; ES, effect size. 

 

Interestingly, the 100% 1RM values of MV (0.24 ± 0.05 ms-1) reported in the present study 

are in line with the findings of Zourdos et al [99] (0.24 ± 0.04 ms-1) who also assessed the full 

depth back squat. In addition, the poor reliability of MV at 100% 1RM observed in the present 

study (ICC = 0.55; CV = 19.4%; SEM = 0.04 ms-1) is also in accordance with recent research 

(ICC = 0.42; CV = 22.5%; SEM = 0.05 ms-1) for the free-weight back squat exercise reported 

elsewhere [66]. Research by Gonzalez-Badillo et al. [31] exploring the use of LVPs did not report 

the reliability of MPV at baseline, yet they found no statistically significant change in MPV (ICC 
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= 0.81 – 0.91; CV = 0.0 – 3.6%) at 5% incremental loads between 30% and 100% 1RM when 56 

participants performed a bench press LVP before (trial 1) and after (trial 2) six weeks of upper 

body resistance training. They concluded that despite an average increase of 9.3% in maximal 

strength for their participant’s over six weeks of training from trial 1 to trial 2, MPV was stable at 

each relative intensity [31]. To our knowledge, no studies have verified if this phenomenon is true 

for PV or MV. Therefore, even though PV and MV are reliable in the present study, future studies 

should establish whether PV and MV remain stable through the relative intensity spectrum if 

maximal strength changes. 

The poor reliability observed in the current study for MPV and MV at 100% 1RM is likely 

due to small horizontal movements that can accompany the predominant vertical bar path in the 

free-weight back squat [89], as well as the inclusion of the SSC for the concentric contraction [82]. 

As a consequence, previous studies assessing LVPs to monitor fatigue have implemented the 

Smith machine and a pause or concentric only contraction to minimize the measurement error of 

concentric movement velocity in their LVPs and 1RM assessments [31, 51]. Despite this, the 

present study utilized the free-weight back squat and demonstrated that MPV and MV were 

reliable at all relative intensities except at 100% 1RM. Therefore movement velocity at 1RM 

should not be included with these movement velocities that make up the LVP. Importantly, 

exercises incorporating the SSC are known to result in greater force production than concentric 

only contractions [88]. Therefore, the methodology used by previous research may provide limited 

ecological validity for a back squat exercise, which athletes typically utilize in a free-weight 

manner with the SSC in order to maximize force production and enhance performance tasks like 

jumping. Furthermore, free-weight 1RM assessments are likely to produce higher 1RM loads than 

pause or concentric only 1RM assessments since greater force is produced in exercises utilizing 

the SSC compared with only concentric contractions [88]. As a consequence, training adaptation 

could be compromised if free-weight exercises are prescribed from pause or concentric only 1RM 

assessments. 
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Table 2. Recommendations for the smallest detectable difference of peak velocity (PV), mean 

propulsive velocity (MPV), and mean velocity (MV) at 20%, 40%, 60%, 80%, 90%, and 100% 

1RM. 

 

 

To our knowledge, the present study is the first to report the reliability of PV, MPV and MV 

through the relative intensity spectrum, and subsequently utilize the reliable relative loads to 

develop LVPs in a free-weight exercise for strength-trained individuals in a non-fatigued state. 

Typically, PV is utilized to monitor impulsive type resistance training exercises such as the 

countermovement jump or bench throw, whereas MV is thought to better represent non-aerial 

movements like the squat or bench press through the entire concentric phase. Sanchez-Medina et 

al. [32] have suggested that MPV is more appropriate than MV at light and medium loads during 

non-aerial movements such as the squat because MV underestimates movement velocity when 

individuals decelerate the barbell at the top of the lift to maintain balance. Our results showed 

there were no significant differences between the correlations of the LVPs derived from PV, MPV, 

or MV. Furthermore, there were no significant differences between the correlations of the LVPs 

fitted with linear regression or second order polynomials for all three-movement velocities (Figure 

22). This suggests that PV, MPV and MV are all suitable to develop LVPs if movement velocities 

at reliable relative loads are chosen for the profiles. Furthermore, the added complexity of fitting 

a second order polynomial to the LVP is unnecessary for the free-weight back squat. However, 

when a coach is selecting which movement velocity to employ to develop a LVP, they should be 

cognizant of the SDD (Table 2) associated with the different movement velocities when adjusting 

sessional training loads.  

A recent study by Conceição et al. [51] tested 15 male track and field athletes and developed 

LVPs which were derived from PV and MPV at 5% incremental loads from 15% to 100% 1RM, 

for the incline machine leg press, full squat and half squat exercises performed on a Smith machine. 

They anecdotally suggested PV and MPV were stable for all exercises but did not report any 

reliability findings as the subjects were only tested once for each exercise. Therefore it is difficult 
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to ascertain if the LVPs derived from the study of Conceição et al. [51] were stable and could be 

used to monitor fatigue (declines in movement velocity). In addition, Conceição et al. [51] 

provided a group mean equation for each exercise which individuals can use to determine their 

relative intensity for a given movement velocity. Although a generalized LVP equation is helpful 

and has some validity, the present study suggests that LVPs are highly individualised. For 

example, although movement velocity is highly reliable, the ranges of measurements for PV at 

20% (1.62 – 2.30 ms-1), 40% (1.36 – 1.96 ms-1), 60% (1.09 – 1.60 ms-1), 80% (0.84 – 1.29 ms-

1), 90% (0.70 – 1.12 ms-1), and 100% 1RM (0.58 – 0.91 ms-1) were vastly different between 

individuals. As a consequence, coaches should create individualised LVPs for each athlete to 

improve the accuracy of monitoring changes in movement velocity and modifying training loads. 

The concept of individualizing training to enhance performance is in accordance with Jiménez-

Reyes et al. [100] who individualised force-velocity profiles to maximize adaptations in jump 

performance. 

 

Figure 21. Individual variation and the group mean of PV (A), MPV (B), and MV (C) at 100% 

1RM for trials 1–3. The black circles indicate the group mean for the relevant 1RM trial. PV 

indicates peak velocity; MPV, mean propulsive velocity; MV, mean velocity; 1RM, 1-repetition 

maximum. 

 

Commonly, coaches monitor fatigue by tracking reductions in peak force using maximal 

isometric force assessments (isometric mid-thigh pull) or PV with ballistic power tests (CMJ) [56, 

101]. These tests are proven to be valid and reliable but these assessments do not precisely identify 

how training loads can be modified for a specific exercise such as the squat. The present study has 

demonstrated that PV, MPV or MV can all be used to modify training load in the free-weight back 

squat if consistent barbell displacement and maximal concentric effort are provided. Therefore, 

coaches can use movement velocity as an accurate monitoring tool to determine an athlete’s level 

of effort and adjust training load in a specific exercise if movement velocity targets are not met. 
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Figure 22. Load–velocity profiles obtained from group mean data (SD) using a second-order 

polynomial fit and a linear regression fit between relative load and (A) PV from 20% to 100% 1-

RM (PV20–100%), (B) MPV from 20% to 90% 1-RM (MPV20–90%), and (C) MV from 20% to 90% 1-

RM (MV20–90%). PV indicates peak velocity; 1-RM, 1-repetition maximum; MPV, mean propulsive 

velocity; MV, mean velocity. 

 

The results from the present study and previous research investigating LVPs for modifying 

the load in training sessions are encouraging. However, some caution should be taken from the 

results particularly in the practical setting due to the specificity of the associated methodology of 

the testing assessments. For example, the findings from the present study do not necessarily 

transfer to other exercises commonly utilized by athletes. Future studies should seek to investigate 

load-velocity profiling for each exercise performed by the athlete in order to modify lifting loads 

during training. In addition, if an individual intends to develop a LVP for the back squat exercise 

using MPV or MV, training velocities derived from the load-velocity relationship at relative loads 

greater than 90% 1RM may not be reliable. Therefore, LVPs utilizing MPV and MV could be 

problematic when training at near maximal relative intensities in the free-weight back squat. 

Crucially, the results obtained from this study are representative of a population who could lift 

between 150 to 240% of their body mass for at least one repetition. If someone were to employ 

load-velocity profiling as part of their training paradigm they would need to collect this data on 

their athlete population as part of their athlete testing/monitoring program. As discussed 

previously, if an athlete was to employ VBT methods, their own individualised LVP should be 

obtained. In addition, if the movement velocity is outside the range of the SDD (Table 2), a coach 

could modify the training load to achieve the requisite velocity from the LVP. However, further 

research is needed to further verify if this is an effective method of training. 
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CONCLUSIONS 

In summary, PV, MPV and MV are reliable and can be used to develop LVPs in the full 

depth free-weight back squat. This suggests that movement velocity could be monitored in training 

and the sessional training loads may be adjusted according to daily readiness. Interestingly, it 

appears unnecessary to employ the added complexity of fitting second-order polynomials, 

compared to linear regression, to improve the accuracy of the LVPs. Furthermore, since there were 

no significant differences between the LVPs developed from the three movement velocities, we 

would suggest the utilization of PV, MPV or MV would be appropriate to develop LVPs with 

linear regression fits.  

 

PRACTICAL APPLICATIONS 

The present study suggests that if practitioners are to utilize LVPs to train competent athletes 

in a free-weight back squat, their athlete should: (1) perform a 1RM assessment; (2) conduct an 

individualised LVP using PV20-100%, MPV20-90%, or MV20-90%; (3) employ a linear regression 

equation and convert a relative intensity table (convert the %1RM to velocity) into a movement 

velocity (PV, MPV, or MV) table; (4) modify training loads based on the SDD of their athlete at 

the required training load. 
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CHAPTER 6: STUDY 4 

COMPARISON OF VELOCITY-BASED AND TRADITIONAL 

1RM-PERCENT-BASED PRESCRIPTION ON ACUTE 

KINETIC AND KINEMATIC VARIABLES  

Banyard HG, Tufano JJ, Delgado J, Thompson S, & Nosaka K. 

International Journal of Sports Physiology and Performance (published ahead of print, 2018) 

ABSTRACT 

Purpose: This study compared kinetic and kinematic data from three different VBT sessions and 

a PBT session using full-depth, free-weight back squats with maximal concentric effort. Methods: 

Fifteen strength-trained men performed four randomized resistance-training sessions 96-hours 

apart: PBT session involved five sets of five repetitions using 80% 1RM; LVP session contained 

five sets of five repetitions with a load that could be adjusted to achieve a target velocity 

established from an individualised LVP equation at 80% 1RM; fixed sets 20% velocity loss 

threshold (FSVL20) session that consisted of five sets at 80%1RM but sets were terminated once 

the MV dropped below 20% of the threshold velocity or when five repetitions were completed per 

set; variable sets 20% velocity loss threshold (VSVL20) session comprised 25-repetitions in total, 

but participants performed as many repetitions in a set as possible until the 20% velocity loss 

threshold was exceeded. Results: When averaged across all repetitions, MV and PV were 

significantly (p < 0.05) faster during the LVP (MV: ES = 1.05; PV: ES = 1.12) and FSVL20 (MV: 

ES = 0.81; PV: ES = 0.98) sessions compared to PBT. Mean time under tension (TUT) and 

concentric TUT were significantly less during the LVP session compared to PBT. FSVL20 session 

had significantly less repetitions, total TUT and concentric TUT than PBT. No significant 

differences were found for all other measurements between any of the sessions. Conclusions: 

VBT permits higher velocity maintenance, avoids additional mechanical stress but maintains 

similar measures of force and power output compared to strength-oriented PBT within a single 

session. 
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INTRODUCTION 

Determining training loads within a periodized programme allows strength coaches to target 

specific attributes, optimize adaptation and allow for recovery [15]. A common method to 

determine resistance-training loads known as PBT, prescribes relative submaximal loads from a 

1RM. Even though 1RMs are valid, reliable and require no monitoring equipment, they are time 

consuming when conducted with large groups. Moreover, maximal strength can fluctuate daily 

when fatigued or significantly increase within a few weeks due to training adaptation [13]. 

Consequently, training when fatigued, or continued training based on an out-dated 1RM may not 

optimize the neuromuscular stimuli required to maximize adaptation. For these reasons, alternative 

methods for prescribing training loads have been established.  

For example, RM training requires an athlete to perform a prescribed number of repetitions 

in a set (e.g. 8-10RM) until concentric muscular failure. Although this method accounts for 

sessional adjustment of training load, it may require an athlete to perform multiple sets to reach 

the target RM load. Furthermore, research suggests that RM training sets can reduce the force 

generating capacity in subsequent training sets and may diminish maximal strength development 

in well-trained athletes [12, 18, 30]. More recently, adjusting training loads based on an athlete’s 

rating of perceived exertion (RPE) has become an alternative to PBT, since it allows for the 

modification of sessional loads based on an athlete’s perceptual readiness to train [99, 102]. 

Although RPE-based methods are valid and reliable, they can be problematic since they are 

subjective and also require a prescribed number of repetitions in a set to be completed until 

adjustments can be made. Therefore, an approach that uses instantaneous repetition feedback to 

objectively prescribe training loads could optimize adaptation and avoid training to failure. 

Due to advancements in commercially available kinetic and kinematic measuring devices, it 

is now possible to provide instantaneous feedback during training for numerous variables such as 

movement velocity. Accordingly, recent literature has explored the use of immediate feedback 

employing VBT methods to objectively manipulate resistance-training loads within a training 

session [14, 20, 26, 33]. If an exercise is performed with maximal concentric effort and fatigue 

ensues, the barbell velocity of the movement will decrease within a set [18, 30]. As greater 

movement velocities with a given load increase the neuromuscular stimuli and adaptations to 

strength training [14], decreases in movement velocity can be detrimental. Therefore, VBT can be 

used to monitor barbell velocity and avoid performing repetitions to concentric muscular failure if 

the training target is to optimize maximal strength and power development, particularly in well-

trained athletes [12]. 
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One VBT approach is characterized by the cessation of a working set if the MV of a 

repetition falls below a pre-determined velocity loss threshold [21]. For example, Padulo et al. 

[13] implemented a 20% velocity loss threshold and showed that maintaining at least 80% of MV 

during training results in greater increases in bench press 1RM compared to RM training. 

Similarly, Pareja-Blanco et al. [20] also showed that using a 20% velocity loss threshold resulted 

in similar increases in strength but greater increases in power output compared to a 40% velocity 

loss threshold. To further elaborate, two variations of the velocity loss threshold method have been 

introduced [21]. The variable sets velocity loss threshold (VSVL) method includes a fixed training 

load and total number of repetitions, but allows for an indefinite number of sets, each finishing 

when a repetition drops below a pre-determined maximum percent velocity loss [33]. This method 

allows an athlete to spread the total number of repetitions across multiple sets, allowing for greater 

recovery time, enabling an athlete to perform all of the prescribed repetitions with faster movement 

velocities. Comparatively, the fixed sets velocity loss threshold (FSVL) method includes a pre-

determined training load and number of sets, but does not have a prescribed number of repetitions. 

This method requires an athlete to perform repetitions in a set until they are no longer able to 

produce the required velocity.  

Importantly, MV and individualised LVPs have been shown to be reliable [49, 50, 103], yet 

no research has explored the use of the LVP as a method to adjust training load. It is proposed that 

if velocity targets are not met according to the individualised LVP during a training session then 

training load can be adjusted to meet these targets [103]. For example if the velocity is lower than 

the velocity from the individualised LVP, the training load can be reduced. Alternatively, if the 

velocity output during a training session is faster than the target velocity then the training load can 

be increased. Previous VBT research has individualised training volume prescription (number of 

repetitions per set) [20, 26, 33] but notably, no research has used velocity to individualize training 

load prescription (load-velocity relationship). Additionally, participants within these studies have 

used a Smith machine and not a large mass free-weight barbell exercise. This is important to 

discern since free-weight exercises are extensively utilized in practice with most athletes and often 

require movements in both the vertical and horizontal planes, which may produce different 

velocity, force and power outputs. Furthermore, no studies have compared VBT to more traditional 

PBT methods.  

Therefore, the objective of this study was to compare the effects of the LVP, FSVL, VSVL 

and PBT methods on the mechanical capacities of the lower body during a typical strength-oriented 

training session in a free-weight exercise. Based on the results of previous research [20, 26, 33], 
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we hypothesized all three VBT training methods would result in greater movement velocities and 

power outputs, but the LVP and FSVL methods would result in the completion of less work and 

time under tension compared to a PBT session since it is conceivable that lighter loads (LVP 

method) or fewer repetitions (FSVL method) would be completed. 

 

METHODS 

Participants 

Fifteen resistance-trained men participated in this study (age:-25.1 ± 3.9 y, height: 179.7 ± 

6.7 cm, body mass: 83.9 ± 10.6 kg) and performed the full depth back squat with a mean knee 

flexion angle of 121.8 ± 9.4° as measured by a handheld plastic goniometer. Their mean 1RM was 

151.3 ± 22.2 kg which was normalized to 1.83 ± 0.29 per kg of body mass (range = 1.55 to 2.43 

per kg of body mass). The participants had 6.7 ± 2.2 years of resistance training experience ranging 

from one to three sessions per week and were free from musculoskeletal injuries. Each participant 

gave written informed consent prior to volunteering, which was in accordance with the ethical 

requirements of the Institutional Human Research Ethics Board. The protocols for this study also 

adhered to The Code of Ethics of the World Medical Association (Declaration of Helsinki).  

 

Experimental Design 

A randomized crossover design was chosen where volunteers completed all four conditions. 

Participants visited the laboratory for a 1RM session, LVP assessment and four randomized 

strength-oriented training sessions. Participants were afforded 48 h rest following the 1RM and 

LVP assessments, but 96 h rest between the four testing sessions to allow for sufficient recovery. 

Experimental sessions included: 1RM-percent-based training (PBT); load-velocity profile (LVP); 

fixed sets 20% velocity loss threshold (FSVL20); variable sets 20% velocity loss threshold (VSVL20) 

(Table 3).  
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Table 3. Description of the experimental sessions. 

 

Experimental Procedure 

Session One: One-Repetition Maximum (1RM) Assessment 

Participants performed all repetitions in a power cage (Fitness Technology, Adelaide, 

Australia) using a 20kg barbell (Eleiko®; Halmstad, Sweden). Prior to the 1RM assessment, 

participants performed warm-up procedures consisting of five minutes pedalling on a cycle 

ergometer (Monark 828E cycle ergometer; Vansbro, Dalarna, Sweden) at 60-revolutions per 

minute and 60W, three minutes of dynamic stretching and 10 full depth bodyweight squats. 

Participants then commenced the 1RM assessment, comprising sets estimated at 20% (3-

repetitions), 40% (3-repetitions), 60% (3-repetitions), 80% (1-repetition), and 90% 1RM (1-

repetition) [66]. This was then followed by the first 1RM attempt with five 1RM attempts 

permitted. After successful 1RM attempts, barbell load was increased in consultation with the 

participant between 0.5 and 2.5 kg. The last successful lift with correct technique and full depth 

was classified as the 1RM load. Two minutes passive rest was allocated between all warm-up sets, 

but three minutes between 1RM attempts. Participants were required to keep the barbell in constant 

contact with the superior aspect of the trapezius muscle and their feet with ground contact at all 

times. The eccentric phase of the squat was performed in a controlled manner but once full knee 

flexion was achieved, the concentric phase was completed as fast as possible. 
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Session Two: Load-Velocity Profile (LVP) Assessment 

Recent research has reported that MV of the free-weight back squat is reliable at 20%, 40%, 

60%, 80% and 90% 1RM but not 100% 1RM [103]. Therefore, it was recommended that 

individualised LVPs should be developed using MV from 20% to 90% 1RM. Consequently, 

participants came to the laboratory and performed the same cycling and dynamic warm-up 

protocols as session one, followed by back squat sets using 20% (3-repetitions), 40% (3-

repetitions), 60% (3-repetitions), 80% (1-repetition) and 90% 1RM (1-repetition) with two minutes 

passive recovery given between sets. The 1RM assessment (session one) allowed for accurate 

relative 1RM loads to be lifted for the LVP assessment. For sets that included more than one 

repetition (i.e. 20%, 40%, and 60% 1RM), the repetition with the fastest MV was utilized for the 

LVP [23]. The individualised LVP’s were constructed by plotting MV against relative load and 

then applying a line of best fit to the data (Microsoft Excel 2016, Microsoft, Redmond, 

Washington, USA). A linear regression equation was then calculated and used to modify the 

training load in the LVP experimental session. 

 

Sessions Three, Four, Five, and Six: Experimental Sessions  

At the commencement of the randomized sessions, participants performed the identical 

cycling, dynamic stretching and bodyweight squat warm-up protocols to sessions one and two. 

Participants then performed warm-up squat sets with maximal concentric effort using 20% (3-

repetitions), 40% (3-repetitions), 60% (3-repetitions), and 80% 1RM (1-repetition) prior to all 

experimental testing sessions. Following these squat sets, two minutes rest was given before the 

commencement of an experimental session. The rest period between each training set was two 

minutes and the time between repetitions within a set was approximately two seconds for the VBT 

sessions as well as the PBT session. All squat repetitions in every session were performed with a 

self-selected, controlled eccentric velocity to full depth (knee angle = 122.5 ± 8.3º, squat depth = 

707 ± 57 mm), which did not differ between sets or sessions (p > 0.05). The concentric phase for 

every repetition in all sessions was performed with maximal effort immediately after the eccentric 

phase. In addition, all participants were verbally encouraged to perform each repetition with 

maximal effort but no participant was provided or able to observe any velocity feedback in any 

session. However, participants were instructed to terminate a set if velocity targets were not met 

(FSVL20 or VSVL20 session) and the load was adjusted if velocity targets were not met (LVP 

session), indicating that the subjects could figure out whether their velocity of the previous set was 

above or below the threshold. 
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The PBT session involved five sets of five repetitions (25-repetitions) using 80% 1RM. 

During this protocol, MV was measured, but did not dictate changes in the external load, number 

of sets, or number of repetitions. 

For the LVP training session, participants performed five sets of five repetitions, but with a 

load that (when performed with maximal intent) achieved an individualised target velocity that 

was established from the individual’s LVP regression equation at 80% 1RM (established in session 

two). If the difference in MV during the warm-up at 80% 1RM was ± 0.06 m·s-1 compared to the 

target velocity at 80% 1RM according to the individualised LVP (as reported by Banyard et al. 

[103]), the first set’s training load was adjusted by ± 5%1RM. Otherwise, the relative load for the 

initial training set was kept at 80% 1RM. Once a set of five repetitions was completed, the load 

for the subsequent set could be adjusted by ±5% 1RM if the average of the MV for the five 

repetitions of the previous set was ± 0.06m·s-1 the target velocity at 80% 1RM according to the 

LVP. In this manner, all participants completed 25-repetitions, but the load of subsequent sets 

could be adjusted according to the MV of the preceding set’s repetitions.  

The FSVL20 session was similar to the PBT session where individuals completed five sets 

using 80% 1RM. However, sets were terminated once the MV of a repetition dropped below 20% 

of the threshold velocity or when five repetitions in the set were completed at or above the 

threshold velocity. When a set was terminated the participant was instructed to cease from 

squatting and rack the barbell. In this manner, it was possible for participants to complete all 25-

repetitions, or fewer.  

In the VSVL20 session, participants completed 25-repetitions in total, but they performed as 

many repetitions in a row as possible until the threshold velocity loss (20%) was exceeded. In this 

manner, participants completed 25-repetitions in as few sets as possible. The 20% velocity loss 

threshold for the FSVL20 and VSVL20 sessions was determined from the MV of the single repetition 

performed at 80%1RM in the experimental protocol warm-up. 

 

Data Acquisition 

All kinetic and kinematic data were collected during the concentric phase of the squat unless 

noted otherwise using similar methodology to previous research [19, 67, 94]. This included MV 

and PV measures that were captured from four LTs (Celesco PT5A-250; Chatsworth, California, 

USA) mounted to the top of the power cage with two positioned in an anterior and posterior 

location on both the left and right side of the barbell. The eccentric phase of each repetition 

commenced at zero displacement (standing) and was completed at maximal displacement (greatest 
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descent) whereas the concentric phase began at maximal displacement and terminated at zero 

displacement. Time under tension (TUT) was calculated by adding the time spent during the 

eccentric (ETUT) and concentric (CTUT) phases of each repetition. The sum of the time under 

tension for the respective phases was also calculated for the session (sETUT, sCTUT and sTUT) 

(Figure 27).  MF and PF were acquired from the quantification of ground reaction forces with the 

use of a force plate (AMTI-BP6001200, Watertown, Massachusetts, USA). MP was calculated as 

the average and PP measures were calculated from the product of force and bar velocity. Mean 

total work (MW) and total session work (TW) were calculated by integrating the area under the 

force-displacement curve during the eccentric and concentric phases of each repetition [70]. The 

sum of the total session load (TL) and mean session load (ML) were also established. The LT and 

force plate data were collected through a BNC-2090 interface box with an analogue-to-digital card 

(NI-6014; National Instruments, Austin, Texas, USA) and sampled at 1000Hz. All data were 

collected and analysed using a customized LabVIEW program (National Instruments, Version 

14.0). All signals were filtered with a 4th order-low pass Butterworth filter with a cut-off frequency 

of 50 Hz. The total tension on the barbell as a result of the transducer attachments (23.0 N) was 

accounted for in all calculations. Mean values of velocity, force and power were determined as the 

average data collected during the concentric phase of the repetition. Contrastingly, peak values of 

velocity, force and power were determined as the maximum value during the concentric phase of 

the lift. MV, PV, MF, PF, MP, PP, ML, MW, ML, ETUT, CTUT, and TUT were calculated as the 

average of all repetitions for each individual within a session (Figure 23 – 27), whereas TL, TW, 

sETUT, sCTUT and sTUT were calculated by totalling the respective data from all repetitions for 

each individual in a session (Figure 26 and 27). 

 

Statistical Analyses 

For all dependent variables a repeated measures ANOVA was used to identify any 

differences between the four experimental protocols with a type-I error rate set at α  0.05. Holm’s 

Sequential Bonferoni post hoc comparisons were used when appropriate [104]. ES (±95% 

confidence intervals) were calculated using Cohen’s d which was interpreted as trivial (≤0.2), 

small (0.20 – 0.60), moderate (0.60 – 1.20), large (1.2 – 2.0) or very large (≥2.0) [75]. Data 

analyses were performed using a statistical software package (SPSS version 22.0, IBM, Armonk, 

NY, USA). Data are reported as mean SD unless stated otherwise. 
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RESULTS 

The load, number of sets, number of repetitions per set, and total session repetitions for each 

experimental session is shown in Table 4. There was no adjustment of training load for the first 

set of the LVP session for any participants, indicating the MV at 80% 1RM in the warm-up was 

within the smallest detectable difference range (±0.06 m·s-1 at 80% 1RM). Significantly fewer 

repetitions were performed during FSVL20 (23.6 ± 2.0 repetitions) compared to all other sessions 

(25-repetitions) (Table 4). During VSVL20, participants completed the 25 repetitions in 4.3 ± 0.9 

sets (range = 3 – 6 sets) (Table 4). Session time was significantly shorter during VSVL20 (9:02 ± 

1:55 min) than PBT (10:36 ± 0:19min), LVP (10:34 ± 0:22 min), and FSVL20 (10:21 ± 0:55 min). 

Compared to PBT (MV: 0.53 ± 0.06 m·s-1; PV: 1.04 ± 0.04 m·s-1), MV and PV were significantly 

faster during LVP (MV: 0.60 ± 0.06 m·s-1, ES = 1.05; PV: 1.09 ± 0.04 m·s-1, ES = 1.12) and FSVL20 

(MV: 0.58 ± 0.05 m·s-1, ES = 0.81; PV: 1.10 ± 0.06 m·s-1, ES = 0.98) (Figure 23). TUT and CTUT 

was significantly less during LVP compared to PBT (Figure 27). Significant differences were also 

observed between PBT and FSVL20 for sTUT and sCTUT (Figure 27). There were no significant 

differences between any of the sessions for all other variables.  

 

Table 4. Mean ± SD description of each experimental session. 

 
Note: Traditional 1RM-percent-based training (PBT), load-velocity profile (LVP); fixed sets 20% 

velocity loss threshold (FSVL20); variable sets 20% velocity loss threshold (VSVL20). 

 

DISCUSSION 

The major findings from the present study were that participants could sustain significantly 

faster MV and PV for repetitions performed during LVP and FSVL20 compared to PBT. In addition, 

the same two VBT methods allowed participants to perform repetitions with significantly less 

mechanical stress (CTUT, TUT, sCTUT, sTUT) while still completing similar amounts of work 

(MW, TW) to PBT. The FSVL20 session also resulted in significantly fewer repetitions than all 

other methods. Furthermore, no significant differences were observed for measurements of force 

(MF, PF), power (MP, PP) and training load lifted (ML, TL) between any of the experimental 

sessions. Consequently, in a single session, the LVP and FSVL20 methods appear to be more 
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favourable than PBT for athletes performing strength-oriented training due to faster movement 

velocities, less mechanical stress but still enduring similar measures of force, power, work and 

training load.  

 

Figure 23. Individual variation of mean repetition values of mean velocity (MV) and peak velocity 

(PV) for the 1RM-percent-based training (PBT), load-velocity profile (LVP), fixed sets 20% 

velocity loss threshold (FSVL20), and variable sets 20% velocity loss threshold (VSVL20) sessions. 

The shaded bars indicate the group mean, and the figure legend contains the numerical group 

velocities for the experimental sessions. #Significant difference between an experimental session 

and PBT. 

 

The significantly higher MV (ES = 1.05) and PV (ES = 1.12) observed during the LVP 

session compared to the PBT session can be attributed to subtle decreases in load (~5% 1RM) 

between sets, yet the total load lifted was not significantly less. By comparison, the significantly 

higher movement velocity observed during FSVL20 compared to PBT (MV: ES = 0.81; PV: ES = 

0.98) were due to the strict 20% velocity loss threshold which resulted in the completion of 

significantly fewer repetitions (23.6 ± 2.0 vs. 25). It is difficult to determine the “optimal” 

resistance-training dose to maximise strength and power development since there are so many 

factors that influence adaptation. However, research investigating this phenomenon in the back 

squat and weightlifting exercises have established that performing a moderate volume of 

repetitions could be more beneficial than performing an unnecessarily high number of repetitions 

(high volume) [105]. For example, Pareja-Blanco et al. [26] had 16 resistance trained professional 



81 

 

male soccer players perform six weeks (18 sessions, ranging from ~50 to ~70% 1RM) of back 

squat training and were evenly assigned into two groups, which differed by a 15% or 30% velocity 

loss threshold in each training set. Subsequently, the 15% velocity loss group trained with 

significantly fewer repetitions (total repetitions: 251.2 ± 55.4 vs. 414.6 ± 124.9; mean 

repetitions/set: 6.0 ± 0.9 vs. 10.5 ± 1.9) and at faster movement velocities (AV: 0.91 ± 0.01 m·s-1 

vs. 0.84 ± 0.02 m·s-1), yet had significantly greater increases in maximal strength (estimated 1RM 

squat) and power output (CMJ height) compared to the 30% velocity loss group. In light of these 

findings, coaches can monitor velocity and employ velocity loss thresholds so that immediate 

feedback can help inform accurate training volume decisions where limiting repetitions performed 

at slower movement velocities and maximizing the number of repetitions performed at faster 

velocities may produce greater increases in strength and power adaptations over time.   

 

Figure 24. Individual variation of mean repetition values of mean force (MF) and peak force (PF) for 

the 1RM-percent-based training (PBT), load-velocity profile (LVP), fixed sets 20% velocity loss 

threshold (FSVL20), and variable sets 20% velocity loss threshold (VSVL20) sessions. The shaded bars 

indicate the group mean, and the figure legend contains the numerical group force values for the 

experimental sessions. 

 

The LVP and FSVL20 sessions also resulted in significantly less mechanical stress compared 

to PBT session, evidenced by less CTUT (Figure 27). In accordance with the load-velocity 

relationship, the lower mechanical stress observed during the LVP session was a consequence of 

the subtle training load reduction (ML and TL) which was not statistically different to the PBT 
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session (ES = 0.00 – 0.34). Contrastingly, the significantly lower mechanical stress (sCTUT and 

sTUT) during FSVL20 compared to PBT was due to the completion of fewer repetitions (ES = 1.01). 

A potential limitation of reduced mechanical stress associated with the LVP and FSVL20 sessions 

is the reduced training stimulus required to maximize muscle hypertrophy [106]. For example, 

Pareja-Blanco et al. [20] had 22 resistance-trained men perform eight weeks (16-sessions, ranging 

from ~68 to ~85% 1RM) of the back squat exercise on a Smith machine (back squat 1RM: 106.2 

± 13.0kg, 1RM to body mass ratio: 1.41 ± 0.19) with the training groups only differing by the 

allowed velocity loss threshold in each set (20% vs. 40%). The 40% velocity loss-training group 

performed significantly more repetitions (total repetitions: 310.5 ± 42.0 vs. 185.9 ± 22.2; mean 

repetitions/set: 6.5 ± 0.9 vs. 3.9 ± 0.5) and had significantly greater hypertrophy of Vastus Lateralis 

and Intermedius muscles (9.0% increase in muscle volume) compared to the 20% velocity loss 

group (3.4% increase) which was not surprising since they completed significantly more work by 

performing 40% more repetitions [106]. These findings indicate that completing fewer repetitions 

or reducing mechanical stress would likely result in less muscular development, suggesting that 

the FSVL20 method and parameters employed in the present study may not be beneficial for 

hypertrophic-oriented training. However, Pareja-Blanco et al. [20] also found that the 20% 

velocity loss training group maintained significantly faster movement velocities (MV: 0.69 ± 

0.02m·s-1 vs. 0.58 ± 0.03m·s-1), had similar increases in maximal strength (18.0% vs. 13.4%) and 

had significantly greater improvements in CMJ height (9.5% vs. 3.5%) compared to the 40% 

velocity loss group. Therefore, although more repetitions maximized muscle hypertrophy, more 

repetitions did not lead to additional strength gains and may not be advantageous for adaptations 

associated with explosive, powerful movements.  
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Figure 25. Individual variation of mean repetition values of mean power (MP) and peak power (PP) 

for the 1RM-percent-based training (PBT), load-velocity profile (LVP), fixed sets 20% velocity loss 

threshold (FSVL20), and variable sets 20% velocity loss threshold (VSVL20) sessions. The shaded bars 

indicate the group mean, and the figure legend contains the numerical group power values for the 

experimental sessions. 

 

Although the present study did not investigate the chronic effects of these protocols, it is 

possible to hypothesize the rationale for adopting the LVP, FSVL20 and VSVL20  training sessions 

for strength and power development in a strength-oriented training cycle. The phosphagen system 

in the human body is the predominant energy system responsible for explosive movements desired 

to maximize increases in strength and power output [15, 107]. This energy system typically lasts 

for up to 10 seconds of maximal effort and when depleted, coincides with rapid decreases in 

movement velocity [107]. If energy stores are depleted without sufficient recovery, it is speculated 

that training under energy depletion and excessive velocity loss could induce adaptations towards 

slower, more fatigue resistant fibre types. This is particularly important for athletes whose training 

goal is primarily focused on explosive force production associated with strength and power 

training and not on maximizing muscle hypertrophy. In addition, increased muscular development 

could be problematic for athletes required to maintain a specific body mass and furthermore, the 

greater mechanical stress which does not lead to greater increases in strength may cause 

unnecessary fatigue and prolong recovery time. Therefore, in order to optimize strength and power 

development, a coach can employ PBT and prescribe a lower number of repetitions per set, or 
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VBT (e.g. LVP, FSVL20 and VSVL20) with objective repetition velocity feedback to reduce the 

amount of velocity loss in a training session so that the required energy system and preferential 

targeting of Type IIX fibers can be utilized to maximize strength and power development [20, 21].  

 

 

Figure 26. Individual variation during the 1RM-percent-based training (PBT), load-velocity profile 

(LVP), fixed sets 20% velocity loss threshold (FSVL20), and variable sets 20% velocity loss threshold 

(VSVL20) sessions for values of mean repetition load (ML), mean repetition work (MW), total session 

load (TL) and total session work (TW), The shaded bars indicate the group mean, and the figure legend 

contains the numerical mean group values for the experimental sessions. 
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Importantly, participants completed the VSVL20 session in a significantly shorter amount of 

time (~90 seconds shorter) compared to the other sessions, yet there were no significant differences 

in MV, PV, MF, PF, MP, PP, ML, TL, MW, TW, ETUT, CTUT, or TUT between VSVL20 and all 

other sessions. This additional 90seconds per exercise (e.g. ~9 minutes for 6 exercises) could 

potentially be reallocated to another training modality or an additional exercise: something that 

could be valuable during time-restricted strength sessions. Although some may argue that it takes 

more time to implement VBT compared to PBT due to setting up the devices, these steps can be 

done by the strength and conditioning staff before training, which does not increase an athlete’s 

training time. However, in the present study there were two participants who took longer (6 sets) 

than the five sets prescribed in the other experimental sessions. Even though VSVL20 required 

participants to complete as many quality (highest possible velocity output against a given load) 

repetitions in as few sets as possible, the VSVL20 training method can allow for flexibility in 

determining the optimal repetition scheme to accommodate daily fluctuations in performance [25]. 

As such, the VSVL20 method allowed these two participants to complete fewer repetitions per set, 

allowing for more recovery time to complete the prescribed total number of repetitions with higher 

velocity outputs. By contrast, VSVL20 also allowed the other 13 participants to complete 25 

repetitions in fewer sets than the other experimental methods. Therefore, VSVL20 could be preferred 

over PBT since it integrates a more objective, Individualised approach based upon an athlete’s 

readiness to train. 

The inclusion of VBT methods over PBT may raise some potential limitations with its use 

in large groups. For example, all VBT methods require specialized equipment to accurately 

monitor movement velocity, and an athlete or coach must modify the training load or repetition 

volume based on the velocity outputs. Additionally, the LVP method requires individualised 

mathematical calculations, but these are no more difficult than the calculations required for PBT 

load prescription. Nevertheless, monitoring devices are becoming more affordable and the latest 

devices now provide instantaneous feedback making it simple to employ the VBT methods from 

the present study. For instance, velocity-monitoring tools can report the average MV of a set, 

making it easy to compare with a prescribed target velocity (LVP method). Furthermore, some 

devices even allow for a specified velocity loss threshold to be set prior to training (e.g. FSVL20 

and VSVL20), expediting their use during training.  
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Figure 27. Individual variation during the 1RM-percent-based training (PBT), load-velocity profile 

(LVP), fixed sets 20% velocity loss threshold (FSVL20), and variable sets 20% velocity loss threshold 

(VSVL20) sessions for values of mean eccentric time under tension (ETUT), mean concentric time under 

tension (CTUT), mean total time under tension (TUT), total session eccentric time under tension 

(sETUT), total session concentric time under tension (sCTUT) and total session time under tension 

(sTUT). The shaded bars indicate the group mean, and the figure legend contains the numerical mean 

group values for the experimental sessions. # Significant difference between and experimental session 

and PBT. 

 

CONCLUSIONS 

The present study revealed that individuals employing the LVP and FSVL20 VBT methods 

could reduce mechanical stress and maintain significantly faster movement velocities during a 

training session compared to PBT. In addition, VSVL20 elicited similar training responses to the 

other experimental sessions, yet was completed in a significantly shorter time. Therefore, VSVL20 

could be viewed as a viable training method for athletes who are pressured for time. As a 
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consequence, the use of VBT allows one to modify training, accounting for the current state of the 

neuromuscular system. Results from the present study show that LVP and FSVL20 VBT methods 

can be employed in a strength-oriented training phase to diminish fatigue-induced decreases in 

movement velocity that can occur in training based on 1RM percentages. 

PRACTICAL APPLICATIONS 

The present study shows that the VBT methods employed in the present study may serve as 

an alternative to more traditional strength-oriented PBT sessions. Specifically, the LVP and FSVL20 

methods permitted individuals to perform repetitions with faster velocities across the entire 

training session compared to PBT, while performing repetitions with less mechanical stress but 

maintaining similar measures of force and power output. Alternatively, the VSVL20 method had 

similar kinetic and kinematic data compared to PBT and the other VBT methods but could be 

completed in a significantly shorter time period which could benefit individuals with time 

constraints. However, it must also be acknowledged that the use of VBT methods requires time to 

set up the equipment prior to training which is not required for PBT sessions. 
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CHAPTER 7: STUDY 5 

THE EFFECTS ON STRENGTH AND POWER 

ADAPTATIONS FOLLOWING SIX WEEKS OF VELOCITY-

BASED TRAINING OR 1RM-PERCENT-BASED TRAINING 

Banyard HG, Tufano JJ, Weakley JS, & Nosaka K. 

 

ABSTRACT 

We compared the effects of VBT and PBT on changes in strength, power and sprint times when 

groups were matched for sets and repetitions but differed in training load prescription. Twenty-

four resistance-trained males performed six weeks of full depth free-weight back squats three times 

per week in a daily undulating format. PBT lifted with relative loads varying from 59% – 85%1RM 

whereas VBT trained with loads that could be adjusted to achieve a target velocity from an 

individualised LVP that corresponded with 59% – 85%1RM. Pre- and post-training assessments 

included 1RM, 30%1RM CMJ, 20m sprint, and 505 change of direction test (COD). VBT 

performed faster repetitions during training (p < 0.05, MV = 0.76 m·s-1 vs. 0.66 m·s-1) that were 

perceived as less difficult (p < 0.05, rating of perceived exertion = 5.1 vs. 6.0), and utilized 

marginally lower training loads (p < 0.05, ~1.7% 1RM) compared to PBT. VBT and PBT groups 

significantly improved 1RM (VBT: 11.3% vs. PBT: 12.5%), CMJ (7.4% vs. 6.0%), 20m sprint (-

1.9% vs. -0.9%), and COD (-5.4% vs. -3.6%), respectively. No significant differences were 

observed between groups for any testing assessment but likely favourable training effects were 

observed in 1RM for PBT, whilst VBT was likely favourable for 5m sprint, and possibly favourable 

for 10m sprint, and COD. Both training methods are similarly effective; however, PBT may 

provide a slight 1RM strength advantage whilst VBT may be preferred by some individuals since 

it permits faster training velocities, is perceived as less difficult, and is a more objective method 

for adjusting training load to account for individual differences in the rate of training adaptation.  

  



89 

 

INTRODUCTION 

Traditional PBT involves prescribing submaximal loads calculated from a 1RM assessment. 

As this method is quite simple, strength and conditioning coaches can utilise PBT methods to 

periodise training load and volume to accommodate for recovery and improve physical abilities 

critical to sports performance [15]. Even though this programming strategy is practical and can be 

managed with relative ease when training a large team of athletes, it does not account for physical 

and psychological stressors that can affect an individual’s day-to-day performance [25]. Recently 

it has been shown that individualising sessional training load can help further optimise the 

neuromuscular stimuli required to maximise training adaptation [102]. For example, Helms et al. 

[102] et al. found that using an athlete’s RPE to prescribe training load may further enhance 

maximal strength gains compared to PBT methods. Even though RPE-based methods can be used 

to modify training load and quantify the perceived difficulty of resistance training sessions, the 

method is subjective. Therefore, more precise objective methods to monitor and prescribe 

individualised sessional training loads may be of particular interest to strength and conditioning 

professionals.  

Recent advancements in commercially available technology (e.g. LTs) have meant that 

immediate kinetic and kinematic outputs can be provided while resistance training. Notably, 

velocity data can be used to objectively manipulate resistance training load and volume within a 

training session depending on how an athlete is performing on that day (i.e. VBT) [108]. There are 

three distinct benefits of monitoring velocity during resistance training. Firstly, instantaneous 

velocity feedback can motivate an individual to maintain maximum effort when exercising [109]. 

Maximal concentric effort is critical to maintaining training intensity and adaptation, with greater 

force output [27, 28, 110, 111] and a recruitment of Type II muscle fibres [29] observed when 

compared to submaximal concentric muscle actions [13, 14]. Secondly, monitoring exercise 

velocity can assist in the identification of velocity ranges/targets and corresponding training loads 

that can enhance training specificity [51]. Thirdly, due to the stability of the load-velocity 

relationship [49, 103], any fluctuations in velocity beyond the normal variation observed between 

training sessions is likely to reflect acute or chronic fatigue or gains in strength [31, 108]. For these 

reasons, monitoring velocity during resistance training sessions may be useful when aiming to 

tailor training prescriptions individually.  

Previous VBT research has explored the use of monitoring velocity to modify training 

volume (number of repetitions per set) by terminating a set once the repetition velocity drops 

below a specified velocity loss threshold, which is usually conveyed as a percent loss in velocity 
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from the fastest repetition in the first set [20, 26]. This VBT method mitigates undue fatigue and 

enables repetitions to be performed with greater velocity and force outputs, which can further 

enhance strength and power adaptations [12]. However, this method may decrease total training 

volume, which may be unwarranted. Therefore, alternative VBT methods may allow for a better 

maintenance of training volume while also minimizing acute fatigue. 

In contrast to the threshold-based VBT approach that adjusts the number of repetitions 

performed within each set, a comparatively novel VBT approach involves adjusting training loads 

to achieve a certain number of repetitions at a target velocity that is established from an 

individualised LVP regression equation. This LVP-VBT method is based on research that shows 

that velocity can accurately determine a %1RM value throughout the entire load-velocity 

relationship [31, 51]. As a result, coaches can prescribe sessional target velocities and modify their 

athletes’ training load if the velocity targets are not met according to their individualised LVP. 

Since this VBT method is objective and able to account for day-to-day variation in individual 

performance, it may allow coaches to further individualize and optimize training compared to PBT 

without decreasing the number of repetitions performed as occurs during threshold-based VBT 

methods.  

To date, no study has investigated the training effects of the LVP-VBT method compared to 

a well-planned (i.e. not to repetitions failure) periodised PBT program. To determine the effects 

of modifying training load to achieve target velocities, the aim of this study was to compare the 

changes in strength, power, sprint times and perceived training difficulty between the LVP-VBT 

and PBT methods. The individualised nature of the LVP-VBT method led us to hypothesize that 

this training method would result in greater adaptations compared to PBT methods. 

 

METHODS 

Participants 

Twenty-four resistance-trained males were recruited for this study. The subject’s descriptive 

characteristics are provided in Table 5. To be included as a participant, the men must have been 

free from injury or illness, have a minimum 1RM full-depth back squat of at least 1.5 times body 

mass, and been performing the back squat for at least two years with a frequency of at least one 

squat training session per week for the last six months. All participants read the information letter 

and signed an informed consent form. The university’s ethical review board granted ethical 

approval for the present study. 
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Table 5. Descriptive characteristics of participants in the VBT and PBT groups. 

 VBT 

(n = 12) 

PBT 

(n = 12) 

Age (y) 25.5 ± 5.0 26.2 ± 5.1 

Height (cm) 180.7 ± 8.5 181.4 ± 7.4 

Body Mass (kg) 84.7 ± 9.5 84.2 ± 7.7 

1RM/Body Mass (kg.kg) 1.61 ± 0.17 1.60 ± 0.15 

 

Experimental Design 

The duration of the entire study lasted eight weeks with a week of pre- and post-measures 

testing conducted before and after six weeks of full-depth, free-weight back squat training (Figure 

28). Briefly, week one consisted of four sessions with 24 hours separating each session. These 

included a familiarization session, 1RM assessment, LVP assessment, and power/speed testing 

session. All of these sessions were repeated during week eight with the exception of the 

familiarization session.  

 

Figure 28. Overall experimental study design timeline. 

 

The groups were counterbalanced using the participant’s pre-test 1RM then assigned into 

either the VBT (n = 12) or PBT (n = 12) group. For the squat training sessions, participants trained 

three times a week, on non-consecutive days, for a total 18 sessions. Except for the loading 

prescription, all aspects of the training study were identical between groups including the rest 

periods (two minutes between sets) and set and repetition configurations (five sets of five 

repetitions). This was due to the fact that we only wanted to observe the effect of modifying 

training loads to achieve target velocities and establish whether differences in this VBT method 

and PBT were apparent. A summary of the resistance training loads for the two groups can be seen 
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in Figure 30A. For the PBT group, each week of training included training loads that descended 

from session to session during the week (heaviest to lightest) but ascended from week to week, 

except for the final week of training where the same loads were prescribed as week one (Figure 

30A). This was done to taper for the post-testing assessments. The VBT program was very similar, 

but the target velocities ascended from session to session during the week and descended from 

week to week, with the final week of training having the same target velocities as week one (Figure 

30). 

Experimental Procedure 

Familiarisation Session 

During this session, the participants entered the laboratory, read through the information 

letter, and then filled out a medical questionnaire and informed consent form. They then had their 

age, height and body mass recorded before proceeding with a light warm-up followed by three 

barbell CMJ’s and five barbell squat repetitions, with three minutes rest allocated between the two 

exercises. Despite the participants experience in these exercises, the CMJ and squat repetitions 

were performed to ensure the strict technique requirements of the study were adhered to. A 20 

minute rest period was then followed by another light dynamic warm-up, three 20m sprint efforts 

and six 505-change of direction efforts (three efforts at turning with each leg). After the 

familiarization session, all participants met the technical criteria and were allowed to continue in 

the study.    

 

One-Repetition Maximum (1RM) Assessment 

Participants performed all repetitions in a power cage (Fitness Technology, Adelaide, 

Australia) using a 20kg barbell (Eleiko®; Halmstad, Sweden). One LT (GymAware Power Tool, 

Kinetic Performance Technologies, Canberra, Australia) was attached 65 cm right of barbell centre 

to collect MV data for all squat repetitions in every session [38, 94]. Prior to the 1RM assessment, 

participants performed a standardized warm-up consisting of five minutes pedalling on a cycle 

ergometer (Monark 828E cycle ergometer; Vansbro, Dalarna, Sweden) at 60 revolutions per 

minute and 60 Watts, three minutes of dynamic stretching and 10 full depth bodyweight squats 

performed with maximal concentric effort. Participants then commenced the 1RM assessment, 

comprising of sets estimated at 20% (3-repetitions), 40% (3-repetitions), 60% (3-repetitions), 80% 

(1-repetition), and 90%1RM (1-repetition) [66]. This was then followed by the first 1RM attempt. 

Following successful 1RM attempts, barbell load was increased between 0.5 and 5 kg in 
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consultation with the participant. A maximum of five 1RM attempts were permitted and the last 

successful lift with correct technique and full depth was classified as the participant’s 1RM. Two 

minutes of passive rest was allocated between all warm-up sets and three minutes between 1RM 

attempts. Participants were required to keep the barbell on the superior aspect of the trapezius 

muscle and their feet with ground contact at all times. The eccentric phase of the squat was 

performed in a controlled manner but once full knee flexion was achieved, the concentric phase 

was completed as fast as possible with verbal encouragement provided by the chief investigator. 

This same squat technique was used for every squat repetition performed throughout the study. 

The warm-up loads (20% – 90%1RM) lifted during the post-testing 1RM session were based off 

the pre-testing 1RM load.  

 

Figure 29. An example of converting a relative load table into a mean velocity table using a load-

velocity profile obtained from a representative participant. 

 

Load-Velocity Profile (LVP) Assessment 

Previous research has found that MV in the free-weight back squat is reliable at 20%1RM, 

40%1RM, 60%1RM, 80%1RM and 90%1RM but not 100%1RM [103]. Therefore, in the present 
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study, individualised LVPs were developed using MV from 20% to 90%1RM (Figure 29). During 

week one, the relative loads (20% to 90%1RM) lifted in LVP-1 were based off the pre-testing 

1RM load. For the post-testing 1RM assessment in week eight, which was also used as LVP-2, the 

warm-up relative loads (20%1RM to 90%1RM) were also based off the pre-testing 1RM load 

(Figure 28). This was done to observe the changes in MV with the same absolute loads between 

LVP-1 and LVP-2. However, for the LVP-3 session, the relative loads lifted (20% to 90%1RM) 

were based off the post-testing 1RM assessment (Figure 27). This was done to compare MV 

changes with the same relative load between LVP-1 and LVP-3. At the commencement of the 

LVP sessions, participants performed the same cycling, dynamic stretching and bodyweight squats 

warm-up protocols as the 1RM assessment. The warm-up was then followed by back squat sets 

using 20% (3-repetitions), 40% (3-repetitions), 60% (3-repetitions), 80% (1-repetition) and 90% 

1RM (1-repetition). Two minutes of passive recovery was given between sets. For sets that 

included more than one repetition (i.e. 20%, 40%, and 60% 1RM), the repetition with the fastest 

MV was included for the LVP regression (Figure 29), which [103]. Figure 29 demonstrates how 

the individualised LVPs were constructed by plotting MV against relative load and then applying 

a line of best fit to the data (Microsoft Excel 2016, Microsoft, Redmond, Washington, USA). A 

linear regression equation was then calculated and used to convert a relative load table into a MV 

table (Figure 29). The individualised MV table was then used to determine daily training loads 

during VBT. 

 

Power and Speed Testing Session 

Loaded Countermovement Jump (CMJ) 

At the commencement of this session, the participants performed the same cycling, dynamic 

stretching and bodyweight squat warm-up as previously described, which was then followed by 

three bodyweight CMJ repetitions that were performed with maximal concentric effort. 

Participants then performed three sets of one repetition of the CMJ with 30% of the pre-test back 

squat 1RM with a one-minute rest period allocated between sets. The CMJ technique required 

participants to stand upright with feet approximately shoulder width apart with hips and knees 

fully extended. The barbell was positioned across the superior aspect of the upper trapezius at all 

times. Participants were instructed to descend into a self-selected depth and immediately follow 

with a jump for maximum height. The CMJ repetition with the fastest PV and highest PP output 

(which was always the same repetition) was collected from the LT and used for further analysis. 
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20m Sprint 

Following the CMJ assessment, participants then performed an additional warm-up protocol 

prior to the 20m sprints which consisted of repeated jogging efforts followed by two sets of 20m 

progressive running acceleration efforts. Timing lights (Swift Speedlight Timing Systems, Swift 

Performance, Brisbane, Australia) were used to measure each sprint with gates placed 1.5 m wide 

at the start line, 5 m, 10 m, and 20 m distances [112]. Two minutes of rest was allocated between 

trials, and participants commenced the 20 m sprints when they were ready in a crouched starting 

position with the lead foot on the start line. The fastest of the three trials, which also happened to 

contain the best 5m and 10m times, was used for further analysis. 

 

505 Change of Direction Test (COD) 

Participants assumed a crouched starting position and sprinted for 15 m before changing 

direction off a designated turning point and sprinting back towards the start line for another 5m 

[113]. Timing gates were positioned 5 m from the designated turning point. Participants completed 

the COD test six times; three with the dominant leg (DL) turning off the designated line and three 

with the non-dominant leg (NDL). Two minutes of rest was given between trials, and the quickest 

trial on each leg was used for further data analysis. 

 

Training Protocols 

At the commencement of each training session, participants performed the same cycling, 

dynamic stretching and bodyweight squat warm-up protocols as those mentioned prior to the 1RM 

assessment. Regardless of the training group, all participants then performed four loaded sets of 

warm-up squats using 20% (3-repetitions), 40% (3-repetitions), and 60%1RM (3-repetitions), 

followed by one repetition at the assigned sessional training load. Following these squat sets, two 

minutes of rest was given prior to the commencement of the training sets. Crucially, all repetitions 

(warm-up and training repetitions) were performed with a controlled eccentric velocity but 

maximal concentric effort. 

As seen in Figure 30A, the PBT group lifted with prescribed relative loads varying from 

59% – 85%1RM that were based on their pre-test 1RM. However, the VBT loads could be adjusted 

(higher or lower) from set-to-set in order to reach the prescribed sessional target velocity from the 

participant’s individualised LVP and subsequent MV table (Figure 29). The target velocity 
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corresponded to the same relative load as the PBT session. For example, in session 1, the PBT 

group trained with 68% 1RM load (Figure 30A), whereas an example participant from the VBT 

group trained with adjustable loads to achieve a sessional average repetition velocity of 0.73 m·s -

1, which corresponded to 68% 1RM in the MV table (Figure 29). 

In order to determine the first set’s training load for each VBT session, the MV of the last 

set of the warm-up (the 1-repetition performed at the assigned sessional training load) was 

compared with the target velocity in the MV table (Figure 29). If the MV was 0.06 m·s-1 higher or 

lower than the target velocity, the first set was adjusted by ±5%1RM. If the difference was 0.12 

m·s-1 higher or lower than the target velocity then a ±10%1RM load adjustment was made, and so 

on. This was based on previous research that found the smallest detectable difference (normal 

variation in velocity) in MV between sessions for the full-depth free-weight back squat was ±0.06 

m·s-1 with relative loads ranging from 20% to 90%1RM [103]. During the VBT sessions, once a 

set of five repetitions was completed, the load for the subsequent set could be adjusted by 

±5%1RM if the average of the MV for the five repetitions of the previous set was 0.06 m·s-1 higher 

or lower than the target velocity for that session. 

In this manner, all participants from both training groups completed 25 repetitions per 

session, but the training load for the VBT group could be adjusted according to the average MV 

of the preceding set’s repetitions. It should be noted that during the two-minute inter-set rest 

period, the principal researcher assessed the average set velocity (which was transmitted from the 

LT to an iPad via Bluetooth) and made appropriate load adjustments for each participant within 

the VBT group. Although this was not difficult, in the real world, this would add some additional 

complexity for an athlete compared to PBT.  

The average repetition velocity deviation for each session was determined by calculating the 

average difference in the MV of each repetition compared to the MV from the individualised LVP 

(Figure 30A). The average repetition velocity was determined as the average MV for each 

participant in each session (Figure 30B). Average repetition load was calculated as the average 

relative load lifted for each repetition in a session (Figure 30C). 

 

Rating of Perceived Exertion (RPE) Measures 

Participants were asked to rate their perceived exertion 30 minutes following each session 

based on the CR-10 RPE scale [114]. When the participant was shown the scale they were asked 

the question “how was the session?” [115]. The participant would then verbally indicate a number 

from 0 to 10 on the scale after comparing with the corresponding descriptor. A rating of 0 
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corresponded with rest and was associated as the least difficult, whereas 10 referred to maximal 

and the most difficult.  

 

Statistical Analyses 

Changes within and between groups for pre- and post-testing measures of 1RM, LVP (MV 

at 20%, 40%, 60%, 80%, 90%, and 100% 1RM), CMJ, 20 m sprint times (5 m, 10 m, and 20 m), 

and COD times were analysed using a two-way repeated measures multivariate analysis of 

variance (MANOVA) with a type-I error rate set at α ≤ 0.05. A between groups MANOVA was 

also used to detect differences in the training session data including average repetition velocity 

loss, average repetition velocity, average repetition load, and session RPE. If a MANOVA showed 

significant differences between groups, a Holm’s Sequential Bonferoni post hoc test was applied 

to determine significant differences. The MANOVA analysis was conducted using a statistical 

software package (SPSS version 22.0 IBM, Armonk, NY, USA). ES (±95% confidence intervals) 

were calculated using Cohen’s d and were interpreted as trivial (≤ 0.2), small (0.20 – 0.60), 

moderate (0.60 – 1.20), large (1.20 – 2.00) or very large (≥ 2.0) [116]. All data were analysed for 

practical significance using magnitude-based inferences [117]. The within group chances that the 

magnitude of change was greater than the smallest worthwhile change ([SWC] = 0.2 x within 

group standard deviation [SD]) from pre- to post-testing was interpreted according to the following 

scale: <0.5% almost certainly not, 0.5 – 5% very unlikely, 5 – 25% unlikely, 25 – 75% possibly, 

75 – 95% likely, 95 – 99.5% very likely, >99.5% almost certainly [116]. In addition, the between 

group comparison for pre- and post-testing measures was assessed (SWC = 0.2 x between group 

SD). If the 90% CI crossed both the upper and lower boundaries of the SWC/Difference, the 

magnitude of change was described as unclear [116].  Data are reported as mean ±SD unless stated 

otherwise. 

 

RESULTS 

Training Results 

The training data including the average repetition load, the average repetition velocity, the 

average repetition velocity deviation per session, and sessional RPE scores are presented in Figure 

30 for both groups.  
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Figure 30. Sessional values for (A) average repetition load (%1RM), (B) average repetition 

velocity, (C) average repetition velocity deviation compared to the intended velocity from the 

individualised load-velocity profile, (D) session rating of perceived exertion [RPE]. *p < 0.05. 

 

Every participant from both training groups completed 100% of all sessions. Over the entire 

training period, the average relative training load was significantly less for the VBT group 

compared to PBT (p < 0.05, 69.2 ± 7.0%1RM vs. 70.9 ± 7.4%1RM); specifically, significant 

differences were observed in sessions 2, 6, 14, 15, and 18 (Figure 30A). Participants from the VBT 

group trained with significantly faster MV compared to PBT (0.76 ± 0.08 m·s-1 vs. 0.66 ± 0.08 

m·s-1) and significant differences were observed in 12 of the 18 sessions (Figure 30B). The fastest 

repetition velocities in both training groups matched the expected velocities from the 

individualised LVP in every training session. Overall, the average magnitude of session velocity 

deviation matched the intended target velocity for the VBT group (-1.2 ± 3.5%) but there was a 

significantly greater magnitude of velocity loss for the PBT group (-13.6 ± 6.8%) compared to the 

intended velocity (Figure 30C). Session RPE scores were significantly higher across the six week 

period in the PBT group (6.0 ± 1.7) compared to VBT (5.1 ± 1.8) with significant differences 

reported during sessions 10, 11, 12, 13, 14, and 15 (Figure 30D). Figure 4 provides examples of 

the individualised training load approach for two representative participants in the VBT group 

with respect to pre-/post- increases in their 1RM compared to PBT group. VBT participant-1 
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typically lifted more than the PBT group with an average repetition load of 74.3%1RM throughout 

the training study, and showed the greatest improvement in 1RM with a 14.3% increase (137.5 to 

157.5kg). Comparatively, participant-2 from the VBT group typically lifted with lighter loads than 

PBT group (68.8%1RM) but still had considerable gains in his 1RM with an 11.1% increase (157.5 

to 175kg). 

 

Testing Results 

Following the training intervention, statistically significant and almost certainly beneficial 

improvements were made for VBT and PBT groups in 1RM strength (VBT: 11.3% vs. PBT: 

12.5%), PV-CMJ (7.4% vs. 4.0%), PP-CMJ (7.7% vs. 6.0%), 5m sprint (-6.5% vs. -3.3%), 10m 

sprint (-3.8% vs. -2.0%), 20m sprint (-1.9% vs. -0.9%), and COD times (-5.4% vs. -3.6%) 

compared to pre-testing measurements (Table 6). Overall, there were no significant differences (p 

> 0.05) between VBT and PBT groups for any testing measures at pre- and post-testing time points 

(Table 7). However, there were likely favourable training effects for PBT group compared to VBT 

group in 1RM changes (ES = 0.62) whilst VBT group had likely or possibly favourable training 

effects for NDL-COD (ES = 0.41), 5m (ES = 0.56) and 10m sprint times (ES = 0.53), as well as 

MV@100%1RM (ES = 0.50) (Figure 32). Unclear training effect differences (ES = 0.00 – 0.34) 

were seen for all other testing measures between groups (Figure 32). As seen in Figure 33, LVP-

2 was significantly different to LVP-1 and LVP-3 for both groups across the relative load spectrum 

(20%1RM – 90%1RM).  
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Table 6. Within group comparisons for pre- and post-performance measures, differences, percent changes, and statistical analyses. 
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DISCUSSION 

The main hypotheses of this study were that VBT would result in greater adaptations for 

strength, power and speed assessments compared to PBT due to the individualised approach of 

VBT. Participants in both groups almost certainly improved their performance in all testing 

measures except in the 20m sprint assessment for the PBT group. There were favourable training 

effects for VBT in preference to PBT for MV@100%1RM (possibly), 5m sprint (likely) and 10m 

sprint times (possibly), as well as NDL-COD (possibly). However, PBT group had likely 

favourable increases in 1RM compared to VBT group. Notably, the strategy of adjusting load to 

achieve a target velocity made the VBT sessions significantly easier than PBT (RPE = 5.1 vs. 6.0) 

and allowed the VBT group to perform training repetitions with significantly faster velocities (MV 

= 0.76 m·s-1 vs. 0.66 m·s-1). This may explain the slightly favourable VBT effects for the sprint 

(5m and 10m) and NDL-COD assessments compared to PBT. Contrastingly, the significantly 

greater training load (~1.7%1RM greater load per repetition) lifted by the PBT group could explain 

the non-significant but likely favourable 1RM strength improvements compared to VBT.  

 

Table 7. Between groups comparison of testing measures at pre- and post-six weeks of squat 

training. 

 VBT vs. PBT (Pre-) VBT vs. PBT (Post-) 

 p-value ES MBI p-value ES MBI 

1RM (kg) 0.858 0.07 Unclear 0.977 0.07 Unclear 

PV – CMJ (m·s
-1

) 0.737 -0.14 Unclear 0.572 0.25 Unclear 

PP – CMJ (W) 0.977 0.01 Unclear 0.798 0.10 Unclear 

MV@20%1RM (m·s
-1

) 0.481 0.34 Unclear 0.439 0.31 Unclear 

MV@40%1RM (m·s
-1

) 0.210 0.59 Unclear 0.279 0.41 Unclear 

MV@60%1RM (m·s
-1

) 0.272 0.48 Unclear 0.494 0.26 Unclear 

MV@80%1RM (m·s
-1

) 0.310 0.44 Unclear 0.625 0.14 Unclear 

MV@90%1RM (m·s
-1

) 0.276 0.34 Unclear 0.571 0.17 Unclear 

MV@100%1RM (m·s
-1

) 0.451 0.16 Unclear 0.195 0.48 Unclear 

5m Sprint (s)  0.330 0.32 Unclear 0.621 -0.15 Unclear 

10m Sprint (s)  0.929 0.00 Unclear 0.314 -0.34 Unclear 

20m Sprint (s) 0.839 -0.07 Unclear 0.512 -0.27 Unclear 

DL – COD (s) 0.723 0.14 Unclear 0.784 -0.06 Unclear 

NDL – COD (s) 0.383 0.31 Unclear 0.893 -0.08 Unclear 

 

This is the first study to analyse the effect of using an individualised LVP to modify training 

load to achieve a prescribed target velocity. Interestingly, even though there were only small (ES 

= 0.23) differences in relative load lifted between groups (Figure 30A), the subtle decreases in 
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load for the VBT group (in order to achieve the intended sessional target velocity) resulted in large 

(ES = 1.25) differences in the MV of the training repetitions between groups (Figure 30B). As a 

consequence, the significantly faster squat velocities reported by the VBT group during training 

may have assisted with the slightly favourable improvements in 5m sprint (~3%), 10m sprint 

(~2%) sprint and NDL-COD times (~2%) compared to PBT. These results are in accordance with 

previous research showing the development of maximal strength in the squat exercise can translate 

to improvements in sprint performance, particularly for short/medium sprints (<30m) [5, 118]. 

Furthermore, improved squatting strength has also been shown to improve other markers of 

performance such as jumping and change of direction [56, 119].  

 

 

Figure 31. Average repetition load for each session obtained from two individuals in the VBT 

group compared to the PBT group. Average training load (%1RM) and the magnitude of 1RM 

increase are provided for the two VBT individuals and the PBT group 

 

An important finding in the present study was that while both groups significantly improved 

their strength, they also enhanced their velocities against all of the same absolute loads in the LVP 

from LVP-1 to LVP-2, which was to be expected according to the load-velocity relationship [31]. 

As seen in Table 2, the absolute change in the velocities across the relative load spectrum was very 

similar between groups (LVP-1 vs. LVP-2) even though the VBT group trained with significantly 

faster training repetition velocities compared to PBT. This suggests the intent to move the bar as 
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rapidly as possible is an important stimulus for enhancing velocity against a given load, regardless 

of training method. Furthermore, there were no significant differences in MV between LVP-1 and 

LVP-3 across the relative load spectrum (20%1RM – 90%1RM) despite the increases in maximal 

strength for both groups (Figure 33). Similar findings were also reported by González-Badillo and 

Sánchez-Medina [31] who found there were no significant change in velocities (ICC = 0.81 – 0.91; 

CV = 0.0 – 3.6%) across the relative load spectrum (30% to 100%1RM) from a bench press LVP 

performed before and after six weeks of upper body strength training, despite an increase in 

maximal strength of 9.3%. Thus, the present study further indicates that LVPs remain stable even 

when maximal strength changes. 

 

Figure 32. Between group effect size comparisons for the changes in testing measures. 

 

Compared to PBT, it was found that participants in the VBT group also perceived training 

to be easier (Figure 30D); this was particularly pertinent during resistance training sessions 10 to 

15 (pertaining to loads of 72% to 85%1RM). During these sessions the VBT group perceived these 

sessions easier when compared to the PBT group, despite there being no significant differences in 

the relative training intensity of sessions 10 (81% 1RM), 11 (77% 1RM), 12 (72% 1RM), and 13 

(85% 1RM). Although it is unclear why these sessions were perceived easier, reductions in 

perception of effort while completing similar external loading may be beneficial for reducing 

subjective measures of training load [120]. 
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As previously mentioned, VBT group lifted with faster average repetition velocities but 

lower average repetition loads compared to PBT group (Figure 30). Notably, both groups 

significantly improved their 1RM after the six weeks of squat training (VBT: ES = 0.80 vs. PBT: 

ES = 1.41) (Table 6). However, even though there were no significant differences between groups, 

PBT group had likely favourable increases in 1RM compared to VBT group (Figure 32). This 

suggests that heavier loads and the intent to move an external load as fast as possible while 

producing force rapidly are critical factors for enhancing strength, and potentially more important 

than the velocity output itself, so long as concentric muscular failure is not achieved. Previous 

VBT research by Padulo et al. [13] showed that strength-trained males (1RM/body mass = ~1.3) 

increased their 1RM by 10.2% after performing maximal concentric velocity bench press training 

for 3-weeks (6-sessions), where training sets were ceased once the repetition velocity dropped 

below 20% of the fastest repetition from the first set. By comparison, another group (1RM/body 

mass = ~1.3) had no significant change in 1RM (0.17% increase) after training with the same 

exercise and training frequency but performed repetitions with self-selected concentric velocity 

and to concentric muscular failure. The greater increases in 1RM observed for the VBT group in 

the Padulo et al. [13] study was attributed to a greater recruitment of motor units at a high firing 

frequency which can improve the RFD. Consequently, it could be speculated that the requirement 

for all participants to use maximal intent during the concentric phase increased muscle activation 

and firing frequency of the lower body muscles. This may have contributed to improvements in 

the RFD that led to the increases in 1RM for both VBT and PBT groups [121].  

A limitation of this study was that hypertrophic measures such as muscle cross sectional area 

and girth measurements using ultrasound, or constant tension tape were not assessed. Based off 

previous findings, it is possible that since the PBT group performed the same training volume (sets 

and repetitions) but higher relative loads, the PBT group may have experienced greater gains in 

muscle hypertrophy in the lower body musculature, but this suggestion is purely speculative. Since 

training load and volume are critical to optimising strength and power adaptations, future studies 

could look to explore the combination of multiple VBT methods. For example, studies have 

explored the use of velocity loss thresholds to terminate repetitions in a set to control training 

volume [20, 26]. Therefore, a combination of the LVP-VBT method to objectively prescribe 

relative training load prescription based on the physiological condition of an individual on a given 

day, and the implementation of velocity loss thresholds to account for the appropriate volume of 

repetitions could be of great use for individuals looking to train with accurate training load and 

volume.   
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Figure 33. Load-velocity profiles (using mean velocity) at baseline (LVP-1), post-training 1RM 

assessment (LVP-2) and post-training load-velocity profile assessment (LVP-3). * denotes that 

LVP-2 velocities are significantly different to LVP-1 and LVP-2. # indicates that MV at 100%1RM 

was not included in the LVPs since it is not reliable 

 

During the present study, participants were in a relatively controlled training environment 

where they refrained from performing other modes of training. Consequently, even though 

significant differences in load were reported between groups throughout the training study, this 

difference only resulted in a small ES (Figure 30A). However, in a team sport environment when 

multiple factors must be considered (technical skills, matches, conditioning etc.), other fatiguing 

elements could exacerbate the magnitude of velocity loss beyond that reported in the present study. 

This may be of additional benefit when using the LVP-VBT approach and assist in the mitigation 

of physical and psychological stressors that can negatively influence performance. Alternatively, 

training load can be increased to accommodate for participants who perform repetitions with faster 

velocities compared to their baseline LVP. For example, a participant in the VBT group lifted with 

heavier loads than PBT group for 13 of 18 training sessions (Figure 31). For this participant, the 

slightly higher training loads over the entirety of the training program compared to PBT group 

(74.3% 1RM vs. 70.9% 1RM) also led to slightly higher increases in 1RM compared to PBT 

(14.5% vs. 12.5%). Thus, a critical aspect to the LVP-VBT method is that it allows individuals to 

lift with appropriate loads on any given day to accommodate for individual rates of training 

adaptation.  
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In conclusion, both VBT and PBT methods were effective for improving strength, power 

output and sprint assessments. However, PBT may be slightly favourable for increasing maximal 

strength whilst VBT provided a slight advantage for enhancing sprint performance tasks. Even 

though most individuals displayed similar improvements in the testing measures regardless of 

training group, the VBT sessions were perceived less difficult and had greater repetition velocities. 

Therefore the LVP-VBT method may be beneficial for the management of perceived training 

loads, particularly in individuals who take part in numerous forms of training (e.g. resistance 

training, conditioning, technical/tactical). Furthermore, some individuals could benefit from the 

individualised approach of the LVP-VBT method used in the present study if maximal strength is 

likely to increase rapidly; such as when an individual returns to regular training following 

sedentary training periods (i.e. return from injury). That being said, if all repetitions are performed 

with maximal intent but not to concentric muscular failure, a periodised PBT resistance training 

program with regular training frequency and progressive overload can provide adequate stimulus 

for the enhancement of strength, power and sports performance tasks. 
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CHAPTER 8 

GENERAL SUMMARY AND CONCLUSIONS 

GENERAL SUMMARY 

The central aim of this thesis was to investigate the efficacy of VBT and whether its use as 

a method of training is more favourable for enhancing strength, power and sprint times compared 

to more traditional PBT methods in strength-trained men. To achieve this, five studies were 

conducted in this thesis project to be able to examine the acute and chronic effects of VBT. In 

these five studies, the validity of two popular velocity measuring devices were examined (Study 

1); the reliability and validity of the load-velocity relationship to predict 1RM was determined 

(Study 2); the reliability of PV, MPV and MV was investigated for the development of LVPs 

(Study 3); the kinetic and kinematic data was compared between three different VBT sessions and 

a PBT session (Study 4); and changes in maximal strength, power and sprint times after 6-weeks 

of VBT (LVP approach) versus PBT were investigated. Therefore, the studies in this thesis were 

designed to first, address the lack of research exploring velocity measuring devices and ultimately, 

the different VBT methods. Specifically, this research has shown that VBT is a valid alternative 

to more traditional PBT methods. Furthermore, VBT may provide coaches greater flexibility to 

regulate resistance-training sessions according to an athlete’s sessional velocity measures and their 

individual differences in the rate of training adaptation.  

In Study 1 (Chapter 3), the validity and reliability of multiple velocity-measuring devices 

was determined and one LT (GYM) stood out as being highly accurate for measuring PV and MV 

at 20%, 40%, 60%, 80%, 90% and 100% 1RM. In addition, the LT was also highly accurate for 

estimating MF and PF across the aforementioned six relative loads (20%-100% 1RM). However, 

some caution should be taken when using LT’s for the assessment of MP and PP since it over 

predicted the power values at lighter loads, more specifically, 20% 1RM for MP and at 20% and 

40% 1RM for PP. Contrastingly, the inertial sensor (PUSH) was only able to accurately estimate 

PF across all six relative intensities. Moreover, the accuracy of the inertial sensor to estimate MV, 

PV, MF, MP, and PP across all relative loads was questionable. These results contradicted 

previous studies that had found that the same inertial sensor was highly accurate for assessing PV 

and MV in the Smith machine back squat and dumbbell bicep curl and shoulder press exercises. It 

is likely that the different results were due to first, the fact that some statistical analyses methods 

were not reported, such as the CV, which is often reported in many validity papers; and second, 
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the differences in exercises, where the PUSH appears to be better suited to vertical movements on 

a Smith machine. In addition, Study 1 was the first research study to assess the validity of an 

inertial sensor across the entire relative intensity spectrum, which is important to discern for 

athletes who train at a variety of relative loads. Therefore, as resistance training is commonly 

performed with free-weights across the entire relative load spectrum, the LT was selected to 

measure velocity for the remainder of the studies contained within this thesis.  

One rationale for VBT is for individualizing training loads based on daily changes in 

maximum strength without the need to perform 1RM assessments every session. Study 2 (Chapter 

4) was the first study, to the author’s knowledge, to show that the 1RMV1RM prediction method 

using the load–velocity relationship was not reliable and valid enough to accurately predict 

maximal strength in the free-weight back squat. These findings did not support our hypothesis but 

since this study was published in 2016, two other studies have also reported similar findings in the 

free-weight deadlift and also the free-weight back squat. In accordance with our results, these two 

other studies also found that the V1RM used in the load–velocity relationship regression equation 

to predict 1RM was unreliable between sessions. As a result, the findings from Study 2 suggest 

that if the V1RM is applied in the linear regression equation to predict 1RM, the load–velocity 

relationship cannot accurately predict daily or training session specific 1RM for the free-weight 

back squat exercise. Therefore, this 1RMV1RM prediction method was not used as a VBT method 

for the remainder of this thesis.   

Study 3 (Chapter 5) was designed to determine whether three different concentric velocities 

were reliable and could be used to develop individualised LVPs, which was completed using the 

warm-up repetitions for the 1RM assessments. The results of this study showed that PV was highly 

reliable at all six relative intensities tested (20%, 40%, 60%, 80%, 90%, and 100% 1RM). 

Similarly, MPV and MV were highly reliable at all relative loads except 100% 1RM. Therefore, a 

coach should not incorporate the movement velocity at 100% 1RM if the LVPs are created from 

MPV or MV. These results suggest that PV, MPV and MV are all acceptable to develop LVPs and 

the individualised LVP could be used as a method for adjusting sessional training loads according 

to an individual’s velocity measures, which are indicative of their readiness to train on a given 

day. Lastly, when the relative loads with reliable velocities were used to create LVPs, there was 

no difference between the correlations of LVPs using linear regression or second-order polynomial 

fits. Therefore, linear regression equations were developed for the LVPs in the remaining studies 

of this thesis since they are easier to calculate and implement in training. 

Study 4 (Chapter 6) was devised so that the kinetic and kinematic data could be compared 
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between three different VBT sessions and a typical strength-oriented PBT session. The major 

findings from this study were that participants could sustain significantly faster MV and PV for 

repetitions performed during the LVP (MV: ES = 1.05; PV: ES = 1.12) and FSVL20 (MV: ES = 

0.81; PV: ES = 0.98) sessions compared to the PBT session. In addition, the same two VBT 

methods allowed participants to perform repetitions with significantly less mechanical stress 

(CTUT, TUT, sCTUT, sTUT) while still completing similar amounts of work (MW, TW) 

compared to the PBT session. These findings for the LVP session were due to the subtle training 

load reduction (~5%1RM) that was not statistically different to the PBT session. Contrastingly, 

the reason for the maintenance of higher sessional velocities and less TUT during the FSVL20 

session was due to the completion of fewer repetitions (23.6 ± 2.0 vs. 25; ES = 1.01) compared to 

all other methods. Interestingly, no significant differences were observed for measurements of 

force (MF, PF), power (MP, PP) or training load lifted (ML, TL) between any of the experimental 

sessions. Consequently, the LVP and FSVL20 methods appear to be more objective, individualised 

training approaches than PBT for athletes performing strength-oriented training sessions due to 

greater maintenance of higher sessional movement velocities, less mechanical stress but still 

enduring similar measures of force, power, work and training load. Alternatively, the VSVL20 

method could benefit individuals with time constraints since participants produced similar kinetic 

and kinematic data during this session compared to PBT and the other VBT methods but still 

completed the same total number of repetitions in a shorter period of time.  

Finally, Study 5 (Chapter 7) was designed to determine the effectiveness of VBT compared 

to PBT over a six week training phase. Of the VBT methods assessed in Study 4 (Chapter 6), the 

LVP approach was chosen in preference to the FSVL20 method since this particular VBT method 

allowed for adjustments in resistance training load to accommodate for individual rates of training 

adaptation, and would also permit the same training volume (repetitions and sets) as PBT. The 

main hypotheses of this study were that VBT would result in greater adaptations for strength, 

power and speed assessments compared to PBT due to the individualised approach of VBT. The 

results of this study showed that participants in both groups almost certainly improved their 

performance in all testing assessments (1RM, CMJ, 20m sprint, and COD) except the PBT group 

in the 20m-sprint (ES = 0.19). Favourable training effects were observed for VBT group in 

preference to the PBT group in V1RM (possibly), 5m sprint (likely) and 10m sprint times (possibly), 

as well as NDL-COD (possibly). However, the PBT group had likely favourable increases in 1RM 

compared to VBT group (12.5% vs. 11.3%). The likely favourable VBT effects in the sprint (5m 

and 10m) and NDL-COD assessments could be attributed to the significantly faster training 
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repetition velocities (MV = 0.76 m·s-1 vs. 0.66 m·s-1). Contrastingly, the slightly favourable 1RM 

strength improvements for the PBT group compared to VBT group was likely due to the 

significantly greater training load (~1.7%1RM greater load per repetition) lifted, which also 

resulted in the PBT group perceiving their training sessions with greater difficulty (RPE = 6.0 vs. 

5.1) than the participants in the VBT group. Therefore, VBT may provide a slight advantage over 

PBT since it provided comparable improvements in strength and power but was perceived as less 

difficult and permitted lower mechanical loading which could improve the management of 

resistance training loads, particularly with athletes who partake in numerous training modalities 

where fluctuations in strength and velocity may be exacerbated.  

Collectively, these studies have shown that VBT methods are valid alternatives to more 

traditional PBT methods. Our main aim that VBT methods were more favourable for enhancing 

strength, power and sprint times was only partially supported. However, VBT methods were 

perceived with less difficulty but induced similar improvements in testing measures whilst 

avoiding additional mechanical loading, which could be beneficial for the management of athletes 

who partake in many fatiguing training modalities. Ultimately, the body of research presented 

provides practical and objective VBT methods to regulate resistance-training sessions and account 

for day-to-day fluctuations in an individual’s performance. However, this thesis has also shown 

that if all repetitions are performed with maximal intended velocity but not to concentric muscular 

failure, a well planned, periodized resistance training program with regular training frequency and 

progressive overload that accounts for bouts of recovery (i.e. PBT) will also provide a similarly 

effective training stimulus to significantly enhance strength and power without the need of 

purchasing velocity measuring equipment. 

 

LIMITATIONS 

Although efforts were made to make the studies in this thesis as practical and ecologically 

valid as possible, some limitations are present. For example, in Study 1 (Chapter 3) the inertial 

sensor (PUSH) and LT (GYM) were validated against four LTs in a laboratory setup. Some 

researchers suggest 3D motion capture systems are the most accurate velocity assessment devices. 

However, advanced 3D motion capture systems must be synchronised with high-speed cameras 

and other technology. Furthermore, they require advanced computational skills and entail a 

significant cost. Moreover, the four LTs employed for the laboratory methods as the criterion 

measurement tool allowed for the quantification of both vertical and horizontal movements on 
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both sides of the barbell permitted a more centralised displacement position. Therefore, although 

some proponents of 3D motion analysis may claim that it is more accurate than an LT, the 4 LT 

in the laboratory system directly measured velocity (distance and time) essentially in 3D. 

A limitation of Study 2 was that the findings regarding the 1RMV1RM prediction method 

(calculated by entering the V1RM into a linear regression equation) are limited to the free-weight 

back squat exercise performed to full depth. Moreover, it does not mean that all approaches using 

the load–velocity relationship would fail. For example, the accuracy of 1RM predictions could be 

improved by using other variables (such as PV or MPV), alternative nonlinear regression models 

or other exercises. However, recent studies have investigated the accuracy of 1RM predictions 

using multiple methods in other free-weight exercises and have found the predictions of maximal 

strength to be questionable, which is in accordance with the results from this thesis project.  

Within Study 3, one major limitation was that if an individual intended to train at relative 

loads greater than 90% 1RM, an LVP developed using MPV or MV may not be reliable. Therefore, 

LVPs utilizing MPV and MV could be problematic for individuals training at near-maximal 

relative loads in the free-weight back squat. However, when training at near maximal loads the 

training volume would likely be between 1–3 repetitions per set prior to concentric muscular 

failure occurring, and would not likely require VBT methods.  

In Study 4, there were some potential limitations with the VBT methods. For example, time 

is required to setup the devices and modify the training load or repetition volume based on the 

velocity outputs. In addition, VBT methods require specialised velocity-measuring equipment, 

which can be cost prohibitive for some individuals. Nevertheless, velocity-monitoring devices are 

becoming more affordable and modern technology provides immediate feedback making it fairly 

simple to use VBT with large training groups. Furthermore, the strength and conditioning staff can 

set up the VBT equipment prior to training so that there is no increase in an athlete’s training time. 

The studies in this thesis were designed specifically to focus on an exercise that improves 

athletic performance and is commonly performed amongst athlete groups, namely the free-weight 

back squat. However, athletes in most sporting codes will perform multiple exercises of the upper 

and lower body to improve athletic performance and reduce the risk of injury. Therefore, the 

investigation of a single exercise is a limitation of this research, but by investigating a single 

exercise, more time and effort could be spent on answering specific research questions so that 

other coaches and researchers can then apply these results to other exercises. 
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DIRECTIONS FOR FURTHER RESEARCH 

Several directions for further research have been described within each separate study 

throughout this thesis. In summary, future research examining 1RM prediction methods could 

utilise different machine and free-weight exercises. Future training studies could assess the 

efficacy of VBT methods using multiple exercises (upper and lower body). As mentioned 

previously, one of the great benefits of VBT (LVP approach) is that an athlete can train with 

appropriate resistance training loads that account for their individual rates of progression. This 

could be hugely beneficial for athletes recovering from injury given the differences in the severity 

of injuries and the rate of recovery. Alternatively, the same VBT method could be employed for 

individual’s who have been sedentary or not trained for a period of time and respond differently 

to the early stages of training. Additionally, providing participants are technically proficient with 

resistance training exercises, VBT methods could be conducted with different populations, 

including women, older adults, adolescent individuals, or anyone who is likely to increase strength 

rapidly. Lastly, future training studies could look to incorporate multiple VBT methods. For 

example, an LVP could be used to determine the resistance-training load from the monitored 

velocity outputs of the warm-up repetitions. Following this, velocity loss thresholds could then be 

implemented to control for the resistance training volume according to the training goal of a 

particular session. 
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APPENDIX B: INFORMATION LETTER – CHAPTER 3, 4, 

AND 5: STUDY 1, 2, 3 

Readers should be aware that during the original proposal, studies 1, 2 and 3 were initially 

planned as one study, which was known as Study 1. However, since collecting and analysing 

the data we realized there were more questions that needed to be answered. 
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APPENDIX C: INFORMATION LETTER – CHAPTER 6: 

STUDY 4 

The reader should be aware that during the original proposal, study 4 was proposed as the 

second study of this thesis. However, when the study 1 data was analysed it became apparent 

that the analysis warranted further investigations.  
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APPENDIX D: INFORMATION LETTER – CHAPTER 7: 

STUDY 5 

The reader should be aware that Study 5 training study in this thesis project was initially 

proposed as Study 3 in the original proposal. 
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APPENDIX F: MEDICAL QUESTIONNAIRE 
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