180 research outputs found

    Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts

    Get PDF
    Objectives: The function of Kv4.3 (KCND3) channels, which underlie the transient outward current I,, in human heart, can be modulated by several accessory subunits such as KChIP2 and KCNE1-KCNE5. Here we aimed to determine the regional expression of Kv4.3, KChIP2, and KCNE mRNAs in non-failing and failing human hearts and to investigate the functional consequences of subunit coexpression in heterologous expression systems. Methods: We quantified mRNA levels for two Kv4.3 isoforms, Kv4.3-S and Kv4.3-L, and for KChIP2 as well as KCNE1-KCNE5 with real-time RT-PCR. We also studied the effects of KCNEs on Kv4.3 + KChIP2 current characteristics in CHO cells with the whole-cell voltage-clamp method. Results: In non-failing hearts, low expression was found for KCNE1, KCNE3, and KCNE5, three times higher expression for KCNE2, and 60 times higher for KCNE4. Transmural gradients were detected only for KChIP2 in left and right ventricles. Compared to non-failing tissue, failing hearts showed higher expression of Kv4.3-L and KCNE1 and lower of Kv4.3-S, KChIP2, KCNE4, and KCNE5. In CHO cells, Kv4.3 + KChIP2 currents were differentially modified by co-expressed KCNEs: time constants of inactivation were shorter with KCNE1 and KCNE3-5 while time-to-peak was decreased, and V-0.5 of steady-state inactivation was shifted to more negative potentials by all KCNE subunits. Importantly, KCNE2 induced a unique and prominent 'overshoot' of peak current during recovery from inactivation similar to that described for human I-to while other KCNE subunits induced little (KCNE4,5) or no overshoot. Conclusions: All KCNEs are expressed in the human heart at the transcript level. Compared to It. in native human myocytes, none of the combination of KChIP2 and KCNE produced an ideal congruency in current characteristics, suggesting that additional factors contribute to the regulation of the native I-to channel

    Decadal changes of the Western Arabian sea ecosystem

    Get PDF
    Historical data from oceanographic expeditions and remotely sensed data on outgoing longwave radiation, temperature, wind speed and ocean color in the western Arabian Sea (1950–2010) were used to investigate decadal trends in the physical and biochemical properties of the upper 300 m. 72 % of the 29,043 vertical profiles retrieved originated from USA and UK expeditions. Increasing outgoing longwave radiation, surface air temperatures and sea surface temperature were identified on decadal timescales. These were well correlated with decreasing wind speeds associated with a reduced Siberian High atmospheric anomaly. Shoaling of the oxycline and nitracline was observed as well as acidification of the upper 300 m. These physical and chemical changes were accompanied by declining chlorophyll-a concentrations, vertical macrofaunal habitat compression, declining sardine landings and an increase of fish kill incidents along the Omani coast

    Recognizing Emotions in a Foreign Language

    Get PDF
    Expressions of basic emotions (joy, sadness, anger, fear, disgust) can be recognized pan-culturally from the face and it is assumed that these emotions can be recognized from a speaker's voice, regardless of an individual's culture or linguistic ability. Here, we compared how monolingual speakers of Argentine Spanish recognize basic emotions from pseudo-utterances ("nonsense speech") produced in their native language and in three foreign languages (English, German, Arabic). Results indicated that vocal expressions of basic emotions could be decoded in each language condition at accuracy levels exceeding chance, although Spanish listeners performed significantly better overall in their native language ("in-group advantage"). Our findings argue that the ability to understand vocally-expressed emotions in speech is partly independent of linguistic ability and involves universal principles, although this ability is also shaped by linguistic and cultural variables

    Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility

    Get PDF
    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage

    Enhanced biological carbon consumption in a high CO2 ocean

    Get PDF
    The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times1, causing a measurable reduction in seawater pH and carbonate saturation2. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period3. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms4, 5, 6. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 μatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today’s ocean7. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change

    Gender and the Communication of Emotion Via Touch

    Get PDF
    We reanalyzed a data set consisting of a U.S. undergraduate sample (N = 212) from a previous study (Hertenstein et al. 2006a) that showed that touch communicates distinct emotions between humans. In the current reanalysis, we found that anger was communicated at greater-than-chance levels only when a male comprised at least one member of a communicating dyad. Sympathy was communicated at greater-than-chance levels only when a female comprised at least one member of the dyad. Finally, happiness was communicated only if females comprised the entire dyad. The current analysis demonstrates gender asymmetries in the accuracy of communicating distinct emotions via touch between humans

    Extending the Implicit Association Test (IAT): Assessing Consumer Attitudes Based on Multi-Dimensional Implicit Associations

    Get PDF
    Background: The authors present a procedural extension of the popular Implicit Association Test (IAT; [1]) that allows for indirect measurement of attitudes on multiple dimensions (e.g., safe–unsafe; young–old; innovative–conventional, etc.) rather than on a single evaluative dimension only (e.g., good–bad). Methodology/Principal Findings: In two within-subjects studies, attitudes toward three automobile brands were measured on six attribute dimensions. Emphasis was placed on evaluating the methodological appropriateness of the new procedure, providing strong evidence for its reliability, validity, and sensitivity. Conclusions/Significance: This new procedure yields detailed information on the multifaceted nature of brand associations that can add up to a more abstract overall attitude. Just as the IAT, its multi-dimensional extension/application (dubbed md-IAT) is suited for reliably measuring attitudes consumers may not be consciously aware of, able to express, or willing to share with the researcher [2,3].Product Innovation ManagementIndustrial Design Engineerin

    Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific

    Get PDF
    Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific western subarctic gyre (WSG) revealed seasonal changes in δ15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting traps (DST; 100-200 m) and moored traps (MST; 200 and 500 m). All particles showed higher δ15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ15N(SUS) of 0.4-3.1 ‰ in the euphotic zone (EZ). The δ15N(SUS) signature was reflected by δ15 N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ15 N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ15 N(DST) variations of 2.4-7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ15 N(DST) vs. PP regression to δ15 N(MST) of 1.9-8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. Moreover, the monthly export ratio at 500 m was calculated using both estimated PP and measured organic carbon fluxes. Results suggest a 1.6 to 1.8 times more efficient transport of photosynthetically-fixed carbon to the intermediate layers occurs in summer/autumn rather than winter/spring

    Effects of parameter indeterminacy in pelagic biogeochemical modules of Earth System Models on projections into a warming future: The scale of the problem

    Get PDF
    Numerical Earth System Models are generic tools used to extrapolate present climate conditions into a warming future and to explore geoengineering options. Most of the current-generation models feature a simple pelagic biogeochemical model component that is embedded into a three-dimensional ocean general circulation model. The dynamics of these biogeochemical model components is essentially controlled by so-called model parameters most of which are poorly known. Here we explore the feasibility to estimate these parameters in a full-fledged three-dimensional Earth System Model by minimizing the misfit to noisy observations. The focus is on parameter identifiability. Based on earlier studies, we illustrate problems in determining a unique estimate of those parameters that prescribe the limiting effect of nutrient- and light-depleted conditions on carbon assimilation by autotrophic phytoplankton. Our results showcase that for typical models and evaluation metrics no meaningful “best” unique parameter set exists. We find very different parameter sets which are, on the one hand, equally consistent with our (synthetic) historical observations while, on the other hand, they propose strikingly differing projections into a warming climate

    A vertically resolved model for phytoplankton aggregation

    Get PDF
    This work presents models of the vertical distribution and flux of phytoplankton aggregates, including changes with time in the distribution of aggregate sizes and sinking speeds. The distribution of sizes is described by two parameters, the mass and number of aggregates, which greatly reduces the computational cost of the models. Simple experiments demonstrate the effects of aggregation on the timing and depth distribution of primary production and export. A more detailed ecological model is applied to sites in the Arabian Sea; it demonstrates that aggregation can be important for deep sedimentation even when its effect on surface concentrations is small, and it presents the difference in timing between settlement of aggregates and fecal pellets
    corecore