138 research outputs found

    Harvesting Entities from the Web Using Unique Identifiers -- IBEX

    Full text link
    In this paper we study the prevalence of unique entity identifiers on the Web. These are, e.g., ISBNs (for books), GTINs (for commercial products), DOIs (for documents), email addresses, and others. We show how these identifiers can be harvested systematically from Web pages, and how they can be associated with human-readable names for the entities at large scale. Starting with a simple extraction of identifiers and names from Web pages, we show how we can use the properties of unique identifiers to filter out noise and clean up the extraction result on the entire corpus. The end result is a database of millions of uniquely identified entities of different types, with an accuracy of 73--96% and a very high coverage compared to existing knowledge bases. We use this database to compute novel statistics on the presence of products, people, and other entities on the Web.Comment: 30 pages, 5 figures, 9 tables. Complete technical report for A. Talaika, J. A. Biega, A. Amarilli, and F. M. Suchanek. IBEX: Harvesting Entities from the Web Using Unique Identifiers. WebDB workshop, 201

    Information Extraction in Illicit Domains

    Full text link
    Extracting useful entities and attribute values from illicit domains such as human trafficking is a challenging problem with the potential for widespread social impact. Such domains employ atypical language models, have `long tails' and suffer from the problem of concept drift. In this paper, we propose a lightweight, feature-agnostic Information Extraction (IE) paradigm specifically designed for such domains. Our approach uses raw, unlabeled text from an initial corpus, and a few (12-120) seed annotations per domain-specific attribute, to learn robust IE models for unobserved pages and websites. Empirically, we demonstrate that our approach can outperform feature-centric Conditional Random Field baselines by over 18\% F-Measure on five annotated sets of real-world human trafficking datasets in both low-supervision and high-supervision settings. We also show that our approach is demonstrably robust to concept drift, and can be efficiently bootstrapped even in a serial computing environment.Comment: 10 pages, ACM WWW 201

    The Effect of Postprandial Lipemia Serum With or Without a Prior Bout of Acute Exercise on Endothelial Cell Function

    Get PDF
    Click the PDF icon to download the abstract

    GREY MATTER AIROPHY IN PATIENTS SUFFERING FROM MULTIPLE SCLEROSIS

    Get PDF
    White matter lesions are defining characteristics of multiple sclerosis (MS), whereas grey matter involvement is a less recognised attribute. Recent investigations using dedicated imaging approaches have made it possible to depict cortical lesions. Additionally, grey matter atrophy may be estimated using various methods. Several studies have suggested that grey matter atrophy closely correlates to clinical disability. In this review we have collected information on grey matter atrophy in MS and the effect of disease modifying therapies upon brain atrophy

    The EAGLE concept - A vision of a future European Land Monitoring Framework

    Get PDF
    Abstract. This paper describes the EAGLE concept, an object-oriented data model for land moni-toring. It highlights the background situation in the field of land monitoring, identifies the team in-volved, explains the technical and strategic considerations behind the concept, describes the cur-rent status of the harmonization and the developments made and outlines the future activities and requirements. After the structure and the content of the data model and matrix are explained, ex-amples are given on how to use the matrix. Besides its possible function as a semantic translation tool between different classification systems, it also can help to analyze class definitions to find semantic gaps, overlaps and inconsistencies and can serve as data model for new mapping initia-tives. On the long-term, the EAGLE concept aims at sketching a vision of a future integrated and harmonized European land monitoring system, which is designed to store all kinds of environmen-tally relevant information on the Earth´s surface, coming from both national and European data sources. Being still in the state of development, some first applications and test cases are under way. This paper also dedicates a chapter referring to the context between the concept and remote sensing in general as well as the relation between land monitoring and the principles of the Euro

    AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma

    Get PDF
    The Hedgehog (Hh) pathway regulates cell differen- tiation and proliferation during development by controlling the Gli transcription factors. Cell fate de- cisions and progression toward organ and tissue maturity must be coordinated, and how an energy sensor regulates the Hh pathway is not clear. AMP- activated protein kinase (AMPK) is an important sensor of energy stores and controls protein synthe- sis and other energy-intensive processes. AMPK is directly responsive to intracellular AMP levels, inhib- iting a wide range of cell activities if ATP is low and AMP is high. Thus, AMPK can affect development by influencing protein synthesis and other processes needed for growth and differentiation. Activation of AMPK reduces GLI1 protein levels and stability, thus blocking Sonic-hedgehog-induced transcrip- tional activity. AMPK phosphorylates GLI1 at serines 102 and 408 and threonine 1074. Mutation of these three sites into alanine prevents phosphorylation by AMPK. This leads to increased GLI1 protein stability, transcriptional activity, and oncogenic potency

    AMP-activated protein kinase - not just an energy sensor

    Get PDF
    Orthologues of AMP-activated protein kinase (AMPK) occur in essentially all eukaryotes as heterotrimeric complexes comprising catalytic α subunits and regulatory β and γ subunits. The canonical role of AMPK is as an energy sensor, monitoring levels of the nucleotides AMP, ADP, and ATP that bind competitively to the γ subunit. Once activated, AMPK acts to restore energy homeostasis by switching on alternate ATP-generating catabolic pathways while switching off ATP-consuming anabolic pathways. However, its ancestral role in unicellular eukaryotes may have been in sensing of glucose rather than energy. In this article, we discuss a few interesting recent developments in the AMPK field. Firstly, we review recent findings on the canonical pathway by which AMPK is regulated by adenine nucleotides. Secondly, AMPK is now known to be activated in mammalian cells by glucose starvation by a mechanism that occurs in the absence of changes in adenine nucleotides, involving the formation of complexes with Axin and LKB1 on the surface of the lysosome. Thirdly, in addition to containing the nucleotide-binding sites on the γ subunits, AMPK heterotrimers contain a site for binding of allosteric activators termed the allosteric drug and metabolite (ADaM) site. A large number of synthetic activators, some of which show promise as hypoglycaemic agents in pre-clinical studies, have now been shown to bind there. Fourthly, some kinase inhibitors paradoxically activate AMPK, including one (SU6656) that binds in the catalytic site. Finally, although downstream targets originally identified for AMPK were mainly concerned with metabolism, recently identified targets have roles in such diverse areas as mitochondrial fission, integrity of epithelial cell layers, and angiogenesis

    mTORC1-mediated translational elongation limits intestinal tumour initiation and growth.

    Get PDF
    Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1-S6K-eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer

    Local Translation in Primary Afferent Fibers Regulates Nociception

    Get PDF
    Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR) has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage - a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states

    Post-Training Dephosphorylation of eEF-2 Promotes Protein Synthesis for Memory Consolidation

    Get PDF
    Memory consolidation, which converts acquired information into long-term storage, is new protein synthesis-dependent. As protein synthesis is a dynamic process that is under the control of multiple translational mechanisms, however, it is still elusive how these mechanisms are recruited in response to learning for memory consolidation. Here we found that eukaryotic elongation factor-2 (eEF-2) was dramatically dephosphorylated within 0.5–2 hr in the hippocampus and amygdala of mice following training in a fear-conditioning test, whereas genome-wide microarrays did not reveal any significant change in the expression level of the mRNAs for translational machineries or their related molecules. Moreover, blockade of NMDA receptors with MK-801 immediately following the training significantly impeded both the post-training eEF-2 dephosphorylation and memory retention. Notably, with an elegant sophisticated transgenic strategy, we demonstrated that hippocampus-specific overexpression of eEF-2 kinase, a kinase that specifically phosphorylates and hence inactivates eEF-2, significantly inhibited protein synthesis in the hippocampus, and this effects was more robust during an “ongoing” protein synthesis process. As a result, late phase long-term potentiation (L-LTP) in the hippocampus and long-term hippocampus-dependent memory in the mice were significantly impaired, whereas short-term memory and long-term hippocampus-independent memory remained intact. These results reveal a novel translational underpinning for protein synthesis pertinent to memory consolidation in the mammalian brain
    corecore