

## Mid Atlantic Regional Chapter of the American College of Sports Medicine



Annual Scientific Meeting, November 1<sup>st</sup> – 2<sup>nd</sup>, 2019 Conference Proceedings International Journal of Exercise Science, Volume 9, Issue 8

## The Effect of Postprandial Lipemia Serum With or Without a Prior Bout of Acute Exercise on Endothelial Cell Function

Abel B. Banko<sup>1</sup>, Nathan T. Jenkins<sup>1,2</sup>, Daniel D. Shill<sup>1</sup>, James M. Hagberg<sup>1</sup>. <sup>1</sup>University of Maryland, College Park, MD; <sup>2</sup>University of Georgia, Athens, GA

Postprandial lipemia (PPL) is a physiological state marked by increased circulating triglycerides, leading to vascular endothelial cell (EC) dysfunction, a precursor to cardiovascular disease. A single bout of acute exercise has been shown to reduce PPL. EC migration, proliferation, and tube formation are important physiological processes involved in maintenance of a healthy endothelium. The effects of PPL on EC migration, proliferation and angiogenic capacity remain largely understudied. Moreover, the influence of a prior bout of exercise and its effect on PPLinduced EC migration, proliferation, and migration remains largely unknown. **PURPOSE:** 1) To determine the effect of PPL serum on human umbilical vein cell (HUVEC) migration, proliferation, tube formation, and ROS production; and 2) to determine the effect of a prior bout of exercise on PPL-induced alterations in EC function. METHODS: 10 healthy men were recruited and performed a VO<sub>2max</sub> test. In 2 separate trials 7 d apart (first trial randomly assigned), participants were given a high fat meal (HF) the morning after a bout of exercise (EX) or a 12 h fast. Exercise was performed on a stationary cycle at 70% VO<sub>2max</sub> until the participants expended 2.5 MJ. Serum was collected immediately prior (0') and 4 h after (4') ingestion of HF and applied to HUVECs in the following experiments: migration/gap closure, proliferation, and angiogenesis tube formation assays. HUVEC intracellular ROS was measured during migration. Data were analyzed using one- (area under the curve (AUC) analyses), two- (HF x EX), or threefactor (HF x EX x time) ANOVAs. Statistical significance was accepted at p<0.05. **RESULTS:** There were no EX x HF interactions. PPL increased migration (AUC) by 14% (0',  $1124\pm55$ ; 4',  $1281\pm76$ ; p<0.05), and proliferation by 6.4% (0',  $2.50\pm0.04$ ; 4', 2.66±0.05; p<0.05). Of the 4 angiogenic indices examined, PPL reduced network integrity by increasing the number of extremities by 17% (0',  $34.1\pm1.8$ ; 4',  $39.9\pm1.7$ ; p<0.05). There was a main effect of exercise on intracellular ROS, as well, increasing levels by 5.5% (0', 197.9±4.7; 4', 209.3±5.0; p<0.05). **CONCLUSION:** PPL increased EC migration, proliferation, and reduced angiogenic network integrity compared to 0'. A bout of exercise does not alter these effects, but does increase intracellular ROS during migration.