39 research outputs found

    Adaptation to cell culture induces functional differences in measles virus proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Live, attenuated measles virus (MeV) vaccine strains were generated by adaptation to cell culture. The genetic basis for the attenuation of the vaccine strains is unknown. We previously reported that adaptation of a pathogenic, wild-type MeV to Vero cells or primary chicken embryo fibroblasts (CEFs) resulted in a loss of pathogenicity in rhesus macaques. The CEF-adapted virus (D-CEF) contained single amino acid changes in the C and matrix (M) proteins and two substitutions in the shared amino terminal domain of the phosphoprotein (P) and V protein. The Vero-adapted virus (D-VI) had a mutation in the cytoplasmic tail of the hemagglutinin (H) protein.</p> <p>Results</p> <p>In vitro assays were used to test the functions of the wild-type and mutant proteins. The substitution in the C protein of D-CEF decreased its ability to inhibit mini-genome replication, while the wild-type and mutant M proteins inhibited replication to the same extent. The substitution in the cytoplasmic tail of the D-VI H protein resulted in reduced fusion in a quantitative fusion assay. Co-expression of M proteins with wild-type fusion and H proteins decreased fusion activity, but the mutation in the M protein of D-CEF did not affect this function. Both mutations in the P and V proteins of D-CEF reduced the ability of these proteins to inhibit type I and II interferon signaling.</p> <p>Conclusion</p> <p>Adaptation of a wild-type MeV to cell culture selected for genetic changes that caused measurable functional differences in viral proteins.</p

    Genetic Characterization of Nipah Virus, Bangladesh, 2004

    Get PDF
    Until 2004, identification of Nipah virus (NV)-like outbreaks in Bangladesh was based on serology. We describe the genetic characterization of a new strain of NV isolated during outbreaks in Bangladesh (NV-B) in 2004, which confirms that NV was the etiologic agent responsible for these outbreaks

    Combining genomics and epidemiology to track mumps virus transmission in the United States.

    Get PDF
    Unusually large outbreaks of mumps across the United States in 2016 and 2017 raised questions about the extent of mumps circulation and the relationship between these and prior outbreaks. We paired epidemiological data from public health investigations with analysis of mumps virus whole genome sequences from 201 infected individuals, focusing on Massachusetts university communities. Our analysis suggests continuous, undetected circulation of mumps locally and nationally, including multiple independent introductions into Massachusetts and into individual communities. Despite the presence of these multiple mumps virus lineages, the genomic data show that one lineage has dominated in the US since at least 2006. Widespread transmission was surprising given high vaccination rates, but we found no genetic evidence that variants arising during this outbreak contributed to vaccine escape. Viral genomic data allowed us to reconstruct mumps transmission links not evident from epidemiological data or standard single-gene surveillance efforts and also revealed connections between apparently unrelated mumps outbreaks

    Ultrastructural Characterization of SARS Coronavirus

    Get PDF
    Severe acute respiratory syndrome (SARS) was first described during a 2002–2003 global outbreak of severe pneumonia associated with human deaths and person-to-person disease transmission. The etiologic agent was initially identified as a coronavirus by thin-section electron microscopic examination of a virus isolate. Virions were spherical, 78 nm in mean diameter, and composed of a helical nucleocapsid within an envelope with surface projections. Herein, we show that infection with the SARS-associated coronavirus resulted in distinct ultrastructural features: double-membrane vesicles, nucleocapsid inclusions, and large granular areas of cytoplasm. These three structures and the coronavirus particles were shown to be positive for viral proteins and RNA by using ultrastructural immunogold and in situ hybridization assays. In addition, ultrastructural examination of a bronchiolar lavage specimen from a SARS patient showed numerous coronavirus-infected cells with features similar to those in infected culture cells. Electron microscopic studies were critical in identifying the etiologic agent of the SARS outbreak and in guiding subsequent laboratory and epidemiologic investigations

    Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus

    Get PDF
    A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection

    Characterizing infection of B cells with wild-type and vaccine strains of measles virus

    No full text
    Summary: Acute infection with measles virus (MeV) causes transient immunosuppression often leading to secondary infections. MeV infection of B lymphocytes results in changes in the antibody repertoire and memory B cell populations for which the mechanism is unknown. In this study, we characterize the infection of primary B cells with wild-type and vaccine strains of MeV. Vaccine-infected B cells were characterized by a higher percentage of cells positive for viral protein, a higher level of viral transcription and reduced cell death compared to wild-type infected cells, regardless of B cell subtype. Vaccine-infected cells showed more production of TNF-α and IL-10 but less production of IL-8 compared to wild-type infected cells. IL-4 and IL-6 levels detected were increased during both vaccine and wild-type infection. Despite evidence of replication, measles-infected B cells did not produce detectable viral progeny. This study furthers our understanding of the outcomes of MeV infection of human B cells

    Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies

    No full text
    Measles is a highly contagious, vaccine preventable disease. Measles results in a systemic illness which causes profound immunosuppression often leading to severe complications. In 2010, the World Health Assembly declared that measles can and should be eradicated. Measles has been eliminated in the Region of the Americas, and the remaining five regions of the World Health Organization (WHO) have adopted measles elimination goals. Significant progress has been made through increased global coverage of first and second doses of measles-containing vaccine, leading to a decrease in global incidence of measles, and through improved case based surveillance supported by the WHO Global Measles and Rubella Laboratory Network. Improved vaccine delivery methods will likely play an important role in achieving measles elimination goals as these delivery methods circumvent many of the logistic issues associated with subcutaneous injection. This review highlights the status of global measles epidemiology, novel measles vaccination strategies, and describes the pathway toward measles elimination

    Activity of Polymerase Proteins of Vaccine and Wild-Type Measles Virus Strains in a Minigenome Replication Assay

    No full text
    The relative activities of five measles virus (MV) polymerase (L) proteins were compared in an intracellular, plasmid-based replication assay. When coexpressed with N and P proteins from an attenuated strain, L proteins from two attenuated viruses directed the production of up to eight times more reporter protein from an MV minigenome than the three wild-type L proteins. Northern blot analysis demonstrated that the differences in reporter protein production correlated with mRNA transcription levels. Increased activity of polymerases from attenuated viruses equally affected mRNA transcription and minigenome replication. The higher level of transcription may be a consequence of increased template availability or may be an independent effect of the elevated activity of the attenuated polymerases. Coexpression of wild-type L proteins with homologous N and P proteins did not affect the activity of the wild-type polymerases, indicating that the differential activity was a function of the L proteins alone. Use of a minigenome that incorporated two nucleotide changes found in the genomic leader of the three wild-type viruses did not raise the activity of the wild-type L proteins. These data demonstrate that increased polymerase activity differentiates attenuated from wild-type viruses and suggest that functions involved in RNA synthesis contribute to the attenuated phenotype of MV vaccine strains
    corecore