34 research outputs found
Molecular Longitudinal Tracking of Mycobacterium abscessus spp. during Chronic Infection of the Human Lung
<div><p>The <i>Mycobacterium abscessus</i> complex is an emerging cause of chronic pulmonary infection in patients with underlying lung disease. The <i>M. abscessus</i> complex is regarded as an environmental pathogen but its molecular adaptation to the human lung during long-term infection is poorly understood. Here we carried out a longitudinal molecular epidemiological analysis of 178 <i>M. abscessus</i> spp. isolates obtained from 10 cystic fibrosis (CF) and 2 non CF patients over a 13 year period. Multi-locus sequence and molecular typing analysis revealed that 11 of 12 patients were persistently colonized with the same genotype during the course of the infection while replacement of a <i>M. abscessus sensu stricto</i> strain with a <i>Mycobacterium massiliense</i> strain was observed for a single patient. Of note, several patients including a pair of siblings were colonized with closely-related strains consistent with intra-familial transmission or a common infection reservoir. In general, a switch from smooth to rough colony morphology was observed during the course of long-term infection, which in some cases correlated with an increasing severity of clinical symptoms. To examine evolution during long-term infection of the CF lung we compared the genome sequences of 6 sequential isolates of <i>Mycobacterium bolletii</i> obtained from a single patient over an 11 year period, revealing a heterogeneous clonal infecting population with mutations in regulators controlling the expression of virulence factors and complex lipids. Taken together, these data provide new insights into the epidemiology of <i>M. abscessus</i> spp. during long-term infection of the CF lung, and the molecular transition from saprophytic organism to human pathogen.</p></div
Phthiocerol Dimycocerosates of M. tuberculosis Participate in Macrophage Invasion by Inducing Changes in the Organization of Plasma Membrane Lipids
Phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), in particular during the early step of infection when bacilli encounter their host macrophages. However, their cellular and molecular mechanisms of action remain unknown. Using Mtb mutants deleted for genes involved in DIM biosynthesis, we demonstrated that DIM participate both in the receptor-dependent phagocytosis of Mtb and the prevention of phagosomal acidification. The effects of DIM required a state of the membrane fluidity as demonstrated by experiments conducted with cholesterol-depleting drugs that abolished the differences in phagocytosis efficiency and phagosome acidification observed between wild-type and mutant strains. The insertion of a new cholesterol-pyrene probe in living cells demonstrated that the polarity of the membrane hydrophobic core changed upon contact with Mtb whereas the lateral diffusion of cholesterol was unaffected. This effect was dependent on DIM and was consistent with the effect observed following DIM insertion in model membrane. Therefore, we propose that DIM control the invasion of macrophages by Mtb by targeting lipid organisation in the host membrane, thereby modifying its biophysical properties. The DIM-induced changes in lipid ordering favour the efficiency of receptor-mediated phagocytosis of Mtb and contribute to the control of phagosomal pH driving bacilli in a protective niche
Genetic Control of Susceptibility to Infection with Candida albicans in Mice
Candida albicans is an opportunistic pathogen that causes acute disseminated infections in immunocompromised hosts, representing an important cause of morbidity and mortality in these patients. To study the genetic control of susceptibility to disseminated C. albicans in mice, we phenotyped a group of 23 phylogenetically distant inbred strains for susceptibility to infection as measured by extent of fungal replication in the kidney 48 hours following infection. Susceptibility was strongly associated with the loss-of-function mutant complement component 5 (C5/Hc) allele, which is known to be inherited by approximately 40% of inbred strains. Our survey identified 2 discordant strains, AKR/J (C5-deficient, resistant) and SM/J (C5-sufficient, susceptible), suggesting that additional genetic effects may control response to systemic candidiasis in these strains. Haplotype association mapping in the 23 strains using high density SNP maps revealed several putative loci regulating the extent of C. albicans replication, amongst which the most significant were C5 (P value = 2.43×10−11) and a novel effect on distal chromosome 11 (P value = 7.63×10−9). Compared to other C5-deficient strains, infected AKR/J strain displays a reduced fungal burden in the brain, heart and kidney, and increased survival, concomitant with uniquely high levels of serum IFNγ. C5-independent genetic effects were further investigated by linkage analysis in an [A/JxAKR/J]F2 cross (n = 158) where the mutant Hc allele is fixed. These studies identified a chromosome 11 locus (Carg4, Candida albicans resistance gene 4; LOD = 4.59), and a chromosome 8 locus (Carg3; LOD = 3.95), both initially detected by haplotype association mapping. Alleles at both loci were inherited in a co-dominant manner. Our results verify the important effect of C5-deficiency in inbred mouse strains, and further identify two novel loci, Carg3 and Carg4, which regulate resistance to C. albicans infection in a C5-independent manner
High Content Phenotypic Cell-Based Visual Screen Identifies Mycobacterium tuberculosis Acyltrehalose-Containing Glycolipids Involved in Phagosome Remodeling
The ability of the tubercle bacillus to arrest phagosome maturation is considered one major mechanism that allows its survival within host macrophages. To identify mycobacterial genes involved in this process, we developed a high throughput phenotypic cell-based assay enabling individual sub-cellular analysis of over 11,000 Mycobacterium tuberculosis mutants. This very stringent assay makes use of fluorescent staining for intracellular acidic compartments, and automated confocal microscopy to quantitatively determine the intracellular localization of M. tuberculosis. We characterised the ten mutants that traffic most frequently into acidified compartments early after phagocytosis, suggesting that they had lost their ability to arrest phagosomal maturation. Molecular analysis of these mutants revealed mainly disruptions in genes involved in cell envelope biogenesis (fadD28), the ESX-1 secretion system (espL/Rv3880), molybdopterin biosynthesis (moaC1 and moaD1), as well as in genes from a novel locus, Rv1503c-Rv1506c. Most interestingly, the mutants in Rv1503c and Rv1506c were perturbed in the biosynthesis of acyltrehalose-containing glycolipids. Our results suggest that such glycolipids indeed play a critical role in the early intracellular fate of the tubercle bacillus. The unbiased approach developed here can be easily adapted for functional genomics study of intracellular pathogens, together with focused discovery of new anti-microbials
Short-Lived Trace Gases in the Surface Ocean and the Atmosphere
The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science
Der Nachweis bereits eines Serratia marcescens Falles auf einer neonatologischen Intensivstation bedarf schneller und umfassender Hygienemaßnahmen
Background: Serratia marcescens is a well-known and challenging pathogen in neonatal intensive care units. It is responsible for severe infections and can cause nosocomial outbreaks. Methods: We present the infection control response to a Serratia marcescens cluster which occurred in a tertiary neonatal intensive care unit. Results and conclusions : The presented comprehensive and decisive hygiene management response starting with the very first case aims especially at early detection and immediate interruption of nosocomial transmission. Frequent and sensitive microbiological screening, rigorous spatial isolation of colonized infants, and reinforcing adherence to hand hygiene are essential in this response, which comprises eight measures. It prevented a full-blown outbreak.Hintergrund: Serratia marcescens ist ein wohlbekannter, herausfordernder Erreger in der neonatologischen Intensivmedizin. Er kann schwere Infektionen bei Frühgeborenen und nosokomiale Ausbrüche verursachen. Methoden: In der vorliegenden Arbeit präsentieren wir das Hygienemanagement einer Serratia marcescens Häufung auf einer tertiären neonatologischen Intensivstation. Ergebnis und Schlussfolgerungen : Das vorgestellte Hygienemanagement, das bereits mit dem ersten auftretenden Serratia marcescens Fall angewendet wird, zielt insbesondere auf die frühe Detektion und schnelle Unterbrechung von nosokomialen Transmissionsketten ab. Ein engmaschiges, sensitives mikrobiologisches Screening, eine strikte räumliche Isolation und die Stärkung der Händehygiene-Adhärenz sind zentrale Maßnahmen in diesem Konzept, welches insgesamt 8 Komponenten beinhaltet. Das Konzept war in der Lage, die Häufungssituation rasch zu kontrollieren und zu begrenzen