805 research outputs found

    Challenges in Catalytic Hydrophosphination

    Get PDF
    Despite significant advances, metal-catalyzed hydrophosphination has ample room for discovery, growth, and development. Many of the key successes in metal-catalyzed hydrophosphination over the last decade have indicated what is needed and what is yet to come. Reactivity that is absent from the literature also speaks to the challenges in catalytic hydrophosphination. This Concept article discusses and highlights recent developments that address the ongoing challenges, and identifies areas in metal-catalyzed hydrophosphination that are underdeveloped. Advances in product selectivity, catalyst design, and both unsaturated and phosphine substrates illustrate the ongoing development of the field. Like all catalytic transformations, the benefits are realized through catalyst, ligand, and conditions, and consideration of those features are the route to a yet more efficient and broadly applicable reaction

    Nitrogen cycling in shallow low oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen isotopes

    Get PDF
    O2 minimum zones (OMZ) of the world's oceans are important locations for microbial dissimilatory NO3- reduction and subsequent loss of combined nitrogen (N) to biogenic N2 gas. This is particularly so when the OMZ is coupled to a region of high productivity leading to high rates of N-loss as found in the coastal upwelling region off Peru. Stable N isotope ratios (and O in the case of NO3- and NO2-) can be used as natural tracers of OMZ N-cycling because of distinct kinetic isotope effects associated with microbially-mediated N-cycle transformations. Here we present NO2- and NO3- stable isotope data from the nearshore upwelling region off Callao, Peru. Subsurface O2 was generally depleted below about 30 m depth with O2 less than 10 μM, while NO2- concentrations were high, ranging from 6 to 10 μM and NO3- was in places strongly depleted to near 0 μM. We observed for the first time, a positive linear relationship between NO2- δ15N and δ18O at our coastal stations, analogous to that of NO3- N and O isotopes during assimilatory and dissimilatory reduction. This relationship is likely the result of rapid NO2- turnover due to higher organic matter flux in these coastal upwelling waters. No such relationship was observed at offshore stations where slower turnover of NO2- facilitates dominance of isotope exchange with water. We also evaluate the overall isotope fractionation effect for N-loss in this system using several approaches that vary in their underlying assumptions. While there are differences in apparent fractionation factor (ε) for N-loss as calculated from the δ15N of [NO3-], DIN, or biogenic N2, values for ε are generally much lower than previously reported, reaching as low as 6.5‰. A possible explanation is the influence of sedimentary N-loss at our inshore stations which incurs highly suppressed isotope fractionation

    Interannual variation in summer N2O concentration in the hypoxic region of the northern Gulf of Mexico, 1985–2007

    Get PDF
    Microbial nitrous oxide (N2O) production in the ocean is enhanced under low-oxygen (O2) conditions. This is especially important in the context of increasing hypoxia (i.e., oceanic zones with extremely reduced O2 concentrations). Here, we present a study on the interannual variation in summertime nitrous oxide (N2O) concentrations in the bottom waters of the northern Gulf of Mexico (nGOM), which is well-known as the site of the second largest seasonally occurring hypoxic zone worldwide. To this end we developed a simple model that computes bottom-water N2O concentrations with a tri-linear 1N2O/O2 relationship based on water-column O2 concentrations, derived from summer (July) Texas–Louisiana shelf-wide hydrographic data between 1985 and 2007. 1N2O (i.e., excess N2O) was computed including nitrification and denitrification as the major microbial production and consumption pathways of N2O. The mean modeled bottom-water N2O concentration for July in the nGOM was 14.5±2.3 nmol L−1 (min: 11.0±4.5 nmol L−1 in 2000 and max: 20.6±11.3 nmol L−1 in 2002). The mean bottom-water N2O concentrations were significantly correlated with the areal extent of hypoxia in the nGOM. Our modeling analysis indicates that the nGOM is a persistent summer source of N2O, and nitrification is dominating N2O production in this region. Based on the ongoing increase in the areal extent of hypoxia in the nGOM, we conclude that N2O production (and its subsequent emissions)from this environmentally stressed region will probably continue to increase into the future

    On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru

    Get PDF
    Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP) off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study, three eddies along a section at 16°45´ S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coastal mode water eddy, an open ocean mode water eddy and an open ocean cyclonic eddy have been identified and sampled in order to determine both their hydrographic properties and their influence on the biogeochemical setting of the ETSP. In the thermocline the temperature of the coastal anticyclonic eddy was up to 2 °C warmer, 0.2 more saline and the swirl velocity was up to 35 cm s−1. The observed temperature and salinity anomalies, as well as swirl velocities of both types of eddies were about twice as large as had been described for the mean eddies in the ETSP. The observed heat and salt anomalies (AHA, ASA) of the anticyclonic eddy near the shelf-break of 17.7 × 1018 J and 36.6 × 1010 kg are more than twice as large as the mean AHA and ASA for the ETSP. We found that the eddies contributed to the productivity by maintaining pronounced subsurface maxima of chlorophyll of up to 6 μg L−1. Based on a comparison of the coastal (young) mode water eddy and the open ocean (old) mode water eddy we suggest that the ageing of eddies when they detach from the shelf-break and move westward to the open ocean influences the eddies' properties: chlorophyll maxima are reduced to about half (2.5–3 μg L−1) and nutrients are subducted. However, different settings at the time of formation may also contribute to the observed differences between the young and old mode water eddies. The coastal mode water eddy was found to be a site of nitrogen (N) loss in the OMZ with a maximum ΔNO3− anomaly (i.e. N loss) of about −25 μmol L−1 in 250 m water depth, whereas, the open ocean mode water and cyclonic eddies were of minor and negligible importance for the N loss, respectively. Our results show that the important role of eddies for the distribution of nutrients, as well as biogeochemical processes in the ETSP (and other OMZ/upwelling regions) can only be fully deciphered and understood through dedicated high spatial and temporal resolution oceanographic/biogeochemical surveys

    Nitrous oxide emissions from the Arabian Sea: A synthesis

    Get PDF
    We computed high-resolution (1º latitude x 1º longitude) seasonal and annual nitrous oxide (N2O) concentration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured between December 1977 and July 1997. N2O concentrations are highest during the southwest (SW) monsoon along the southern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N2O and are dominated by fluxes from coastal regions during the SW and northeast monsoons. Our revised estimate for the annual N2O flux from the Arabian Sea is much more tightly constrained than the previous consensus derived using averaged in-situ data from a smaller number of studies. However, the tendency to focus on measurements in locally restricted features in combination with insufficient seasonal data coverage leads to considerable uncertainties of the concentration fields and thus in the flux estimates, especially in the coastal zones of the northern and eastern Arabian Sea. The overall mean relative error of the annual N2O emissions from the Arabian Sea was estimated to be at least 65%

    Validating CFD predictions of flow over an escarpment using ground-based and airborne measurement devices

    Get PDF
    Micrometeorological observations from a tower, an eddy-covariance (EC) station and an unmanned aircraft system (UAS) at the WINSENT test-site are used to validate a computational fluid dynamics (CFD) model, driven by a mesoscale model. The observation site is characterised by a forested escarpment in a complex terrain. A two-day measurement campaign with a flow almost perpendicular to the escarpment is analysed. The first day is dominated by high wind speeds, while, on the second one, calm wind conditions are present. Despite some minor differences, the flow structure, analysed in terms of horizontal wind speeds, wind direction and inclination angles shows similarities for both days. A real-time strategy is used for the CFD validation with the UAS measurement, where the model follows spatially and temporally the aircraft. This strategy has proved to be successful. Stability indices such as the potential temperature and the bulk Richardson number are calculated to diagnose atmospheric boundary layer (ABL) characteristics up to the highest flight level. The calculated bulk Richardson values indicate a dynamically unstable region behind the escarpment and near the ground for both days. At higher altitudes, the ABL is returning to a near neutral state. The same characteristics are found in the model but only for the first day. The second day, where shear instabilities are more dominant, is not well simulated. UAS proves its great value for sensing the flow over complex terrains at high altitudes and we demonstrate the usefulness of UAS for validating and improving models

    Global oceanic production of nitrous oxide

    Get PDF
    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass.We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1+/-0.9 to 3.4+/-0.9 Tg N yr^-1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed

    Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Get PDF
    The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O) that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the water column of the eastern tropical North Atlantic (ETNA) and eastern tropical South Pacific (ETSP) Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen in the ocean

    Nitrous oxide emissions from the Arabian Sea: A synthesis

    Get PDF
    We computed high-resolution (1º latitude x&nbsp; 1º longitude) seasonal and annual nitrous oxide (N<sub>2</sub>O) concentration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured between December 1977 and July 1997. N<sub>2</sub>O concentrations are highest during the southwest (SW) monsoon along the southern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N<sub>2</sub>O and are dominated by fluxes from coastal regions during the SW and northeast monsoons. Our revised estimate for the annual N<sub>2</sub>O flux from the Arabian Sea is much more tightly constrained than the previous consensus derived using averaged in-situ data from a smaller number of studies. However, the tendency to focus on measurements in locally restricted features in combination with insufficient seasonal data coverage leads to considerable uncertainties of the concentration fields and thus in the flux estimates, especially in the coastal zones of the northern and eastern Arabian Sea. The overall mean relative error of the annual N<sub>2</sub>O emissions from the Arabian Sea was estimated to be at least 65%

    BubR1 promotes Bub3-dependent APC/C inhibition during Spindle Assembly Checkpoint signaling.

    No full text
    The spindle assembly checkpoint (SAC) prevents premature sister chromatid separation during mitosis. Phosphorylation of unattached kinetochores by the Mps1 kinase promotes recruitment of SAC machinery that catalyzes assembly of the SAC effector mitotic checkpoint complex (MCC). The SAC protein Bub3 is a phospho-amino acid adaptor that forms structurally related stable complexes with functionally distinct paralogs named Bub1 and BubR1. A short motif ("loop") of Bub1, but not the equivalent loop of BubR1, enhances binding of Bub3 to kinetochore phospho-targets. Here, we asked whether the BubR1 loop directs Bub3 to different phospho-targets. The BubR1 loop is essential for SAC function and cannot be removed or replaced with the Bub1 loop. BubR1 loop mutants bind Bub3 and are normally incorporated in MCC in vitro but have reduced ability to inhibit the MCC target anaphase-promoting complex (APC/C), suggesting that BubR1:Bub3 recognition and inhibition of APC/C requires phosphorylation. Thus, small sequence differences in Bub1 and BubR1 direct Bub3 to different phosphorylated targets in the SAC signaling cascade
    corecore