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Abstract. O2 deficient zones (ODZs) of the world’s oceans

are important locations for microbial dissimilatory nitrate

(NO−3 ) reduction and subsequent loss of combined nitrogen

(N) to biogenic N2 gas. ODZs are generally coupled to re-

gions of high productivity leading to high rates of N-loss as

found in the coastal upwelling region off Peru. Stable N and

O isotope ratios can be used as natural tracers of ODZ N-

cycling because of distinct kinetic isotope effects associated

with microbially mediated N-cycle transformations. Here we

present NO−3 and nitrite (NO−2 ) stable isotope data from the

nearshore upwelling region off Callao, Peru. Subsurface oxy-

gen was generally depleted below about 30 m depth with

concentrations less than 10 µM, while NO−2 concentrations

were high, ranging from 6 to 10 µM, and NO−3 was in places

strongly depleted to near 0 µM. We observed for the first time

a positive linear relationship between NO−2 δ
15N and δ18O at

our coastal stations, analogous to that of NO−3 N and O iso-

topes during NO−3 uptake and dissimilatory reduction. This

relationship is likely the result of rapid NO−2 turnover due

to higher organic matter flux in these coastal upwelling wa-

ters. No such relationship was observed at offshore stations

where slower turnover of NO−2 facilitates dominance of iso-

tope exchange with water. We also evaluate the overall iso-

tope fractionation effect for N-loss in this system using sev-

eral approaches that vary in their underlying assumptions.

While there are differences in apparent fractionation factor

(ε) for N-loss as calculated from the δ15N of NO−3 , dissolved

inorganic N, or biogenic N2, values for ε are generally much

lower than previously reported, reaching as low as 6.5 ‰. A

possible explanation is the influence of sedimentary N-loss at

our inshore stations which incurs highly suppressed isotope

fractionation.

1 Introduction

Chemically combined nitrogen (N), e.g., nitrate (NO−3 ), is an

important phytoplankton nutrient limiting primary produc-

tivity and carbon export throughout much of the ocean (e.g.

Gruber, 2008). The marine nitrogen cycle involves a series

of microbial processes, which transfer N between a num-

ber of chemical forms. These include N2 fixation, nitrifica-

tion (ammonium (NH+4 ) and nitrite (NO−2 ) oxidation), and

loss of combined N to N2 via denitrification and anaerobic

ammonium oxidation (anammox). Of particular importance

is the global balance between sources of combined N (N2

fixation) and N-loss processes which ultimately control the

combined N content of the ocean and thus its productivity

and strength of the biological carbon pump. N-loss typically

occurs under nearly anoxic conditions where the first step,

dissimilatory NO−3 reduction to NO−2 , active at oxygen (O2)

concentrations less than ∼ 25 µM (Kalvelage et al., 2011),

is used by heterotrophic microbes in lieu of O2 for respira-

tion. Canonically, the denitrification pathway of successive

reduction of NO−3 , NO−2 , nitric oxide (NO), and nitrous ox-

ide (N2O) to N2 was considered as the dominant pathway

for N-loss. However, since the early 2000s, anammox (NO−2
+ NH+4 → N2) was found to be widespread in the ocean

(Kuypers et al., 2003, 2005; Hamersley et al., 2007; Dals-

gaard et al., 2012; Kalvelage et al., 2013). While it is still a
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matter of debate whether denitrification or anammox is the

dominant pathways for N-loss in Oxygen Minimum Zones

(ODZs) (e.g., Lam et al., 2009; Ward et al., 2009), both N-

loss processes have been shown to strongly vary spatially

and temporally and are linked to organic matter export and

composition (Kalvelage et al., 2013; Babbin et al., 2014). It

follows that there is still considerable uncertainty as to the

controls on N-loss as well as the role for other linking pro-

cesses such as DNRA (NO−3 to NH+4 ) and NO−2 oxidation in

the absence of O2.

Marine N-loss to N2 occurs predominately in reducing

sediments and the O2 deficient water columns found in the

Arabian Sea and Eastern Tropical North and South Pacific

ODZs (Lam and Kuypers, 2011 and references therein; Ul-

loa et al., 2012). NO−2 is an important intermediate during

N-loss and generally accumulates at concentrations up to

∼ 10 µM in these regions (Codispoti et al., 1986; Casciotti

et al., 2013). The depletion of NO−3 is typically quantified as

a dissolved inorganic N (DIN=NO−3 +NO−2 +NH+4 ) deficit

relative to phosphate (PO−3
4 ) assuming Redfield stoichiom-

etry and the accumulation of biogenic N2 (when measured)

is detected as anomalies in N2 /Ar relative to saturation with

atmosphere (Richards and Benson, 1961; Chang et al., 2010;

Bourbonnais et al., 2015).

NO−3 and NO−2 N and O isotopes represent a useful

tool to study N cycle transformations as they respond

to in situ processes and integrate over their charac-

teristic time and space scales. Biologically mediated

reactions are generally faster for lighter isotopes. For

instance, both NO−3 uptake and dissimilatory NO−3
reduction produce a strong enrichment in both 15N

(δ15N= [(15N / 14Nsample) / (15N / 14Nstandard)− 1]× 1000)

and 18O (δ18O= [(18O / 16Osample) / (18O / 16Ostandard)−

1]× 1000) in the residual NO−3 (Cline and Kaplan, 1975;

Brandes et al., 1998; Voss et al., 2001; Granger et al., 2004,

2008; Sigman et al., 2005).

Canonical values for the N isotope effect (ε ≈

δ15Nsubstrate− δ
15Nproduct, without significant substrate

depletion) associated with microbial NO−3 reduction during

water column denitrification range from 20 to 30 ‰ (Bran-

des et al., 1998; Voss et al., 2001; Granger et al., 2008). In

contrast, the expression of the isotope effect of sedimentary

denitrification is highly suppressed as compared to the

water-column (generally < 3 ‰) mostly due to near complete

consumption of the porewater NO−3 and diffusion limitation

(Brandes and Devol, 1997; Lehmann et al., 2007; Alkhatib

et al., 2012). The δ15N and δ18O of NO−3 are affected in

fundamentally different ways during NO−3 consumption

and production processes. The ratio of the 15N and 18O

fractionation factors (18ε : 15ε) during NO−3 consumption

during denitrification or assimilation by phytoplankton in

surface waters is close to 1 : 1 (Casciotti et al., 2002; Granger

et al., 2004, 2008). While the δ15N of the newly nitrified

NO−3 depends on the δ15N of the precursor molecule being

nitrified, the O atom is mostly derived from water (with a

δ18O of ∼ 0 ‰) with significant isotopic fractionation asso-

ciated with O incorporation during NO−2 and NH+4 oxidation

(Casciotti, 2002; Buchwald and Casciotti, 2010; Casciotti et

al., 2010). Therefore, any deviation from this 1:1 ratio in the

field has been interpreted as evidence that NO−3 regeneration

is co-occurring with NO−3 consumption (Sigman et al., 2005;

Casciotti and McIlvin, 2007; Bourbonnais et al., 2009).

NO−2 oxidation is associated with an inverse N isotope effect

(Casciotti, 2009), atypical of biogeochemical reactions, and

can cause both lower and higher ratios for 18ε : 15ε compared

to pure NO−3 assimilation or denitrification, depending on

the initial isotopic compositions of the NO−2 and NO−3 and

the 18O added back (Casciotti et al., 2013).

Additional information on N-cycling processes can be ob-

tained from the isotopic composition of NO−2 . For example,

because of its inverse N isotope effect, NO−2 oxidation results

in a lower NO−2 δ
15N than initially produced by NH+4 oxi-

dation and NO−3 reduction (Casciotti, 2009; Brunner et al.,

2013). Logically, NO−2 reduction would be expected to pro-

duce a positive relationship between δ15N-NO−2 and δ18O-

NO−2 though there are no quantitative observations in the lit-

erature. Analogous to NO−3 reduction, it also involves en-

zymatic breakage of the N-O bond. However, O-isotope ex-

change of NO−2 with water (as a function of pH and tem-

perature) would reduce the slope of a NO−2 δ18O vs. δ15N

relationship toward zero. NO−2 turnover time can therefore

be assessed from this observed relationship and in situ pH

and temperature (Buchwald and Casciotti, 2013).

It is still under discussion whether the global ocean N bud-

get is in balance. Current estimates from direct observations

and models for N2 fixation, considered the primary marine N

source, range from 110–330 Tg N yr−1 (Brandes and Devol,

2002; Gruber, 2004; Deutsch et al., 2007; Eugster and Gru-

ber, 2012; Großkopf et al., 2012). Estimates for major ma-

rine N-sinks, i.e., denitrification and anammox in the water-

column of oxygen deficient zones and sediments account for

145–450 Tg N yr−1 (Gruber, 2004; Codispoti, 2007; DeVries

et al., 2012; Eugster and Gruber, 2012). Large uncertainties

are associated with this budget, mainly in constraining the

proportion of sedimentary denitrification which is typically

estimated from ocean’s N isotope balance and the expressed

isotope effects for water-column vs. sedimentary NO−3 re-

duction during denitrification (e.g. Brandes and Devol, 2002;

Altabet, 2007; DeVries et al., 2012). Liu (1979) was first to

suggest a lower ε for denitrification in the Peru ODZ as com-

pared to the subsequently accepted canonical range for NO−3
reduction of 20 to 30 ‰ (Brandes et al., 1998; Voss et al.,

2001; Granger et al., 2008). Ryabenko et al. (2012) provided

a more widely distributed set of data in support. Most re-

cently, a detailed study in a region of extreme N-loss asso-

ciated with a Peru coastal mode-water eddy confirmed an ε

value for N-loss of ∼ 14 ‰ (Bourbonnais et al., 2015). Ap-
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plying such a lowered value to global budgets would bring

the global N budget closer to balance.

Ryabenko et al. (2012) also suggested that ε values were

even lower in the shelf region of the Peru ODZ. To investi-

gate further, we present here N and O isotope data for NO−2
and NO−3 from shallow coastal waters near Callao, off the

coast of Peru. These waters are highly productive as a conse-

quence of active upwelling that is also responsible for shoal-

ing of the oxycline. We determine the relationship between

NO−2 δ
15N and δ18O and its implication for NO−2 cycling in

these shallow waters as compared to offshore stations. We

finally derive isotope effects for N-loss and infer the likely

influence of sedimentary N-loss, which incurs a highly sup-

pressed isotope effect, at our relatively shallow sites.

2 Material and methods

2.1 Sampling

The R/V Meteor 91 research cruise (M91) to the eastern trop-

ical South Pacific Ocean off Peru in December 2012 was part

of the SOPRAN program and the German SFB 754 project. It

included an along shore transect of seven inner shelf stations

located between 12 to 14◦ S that were chosen for this study

(Fig. 1). These stations had a maximum depth of 150 m ex-

cept for station 68 (250 m depth). We additionally sampled

deep offshore stations during the M90 cruise in November

2012. Samples for NO−3 and NO−2 isotopic composition and

N2 /Ar ratio were collected using Niskin bottles mounted on

a CTD/Rosette system, which was equipped with pressure,

temperature, conductivity, and oxygen sensors. O2 concen-

trations were determined using a Seabird sensor, calibrated

using the Winkler method (precision of 0.45 µmol L−1) with

a lower detection limit of 2 µmol L−1. Nutrients concentra-

tions were measured on board using standard methods as de-

scribed in Stramma et al. (2013).

2.2 NO−
2

and NO−
3

isotope analysis

NO−2 samples were stored in 125 mL HDPE bottles

preloaded with 2.25 mL 6 M NaOH to prevent microbial ac-

tivity as well as alteration of δ18O-NO−2 by isotope ex-

change with water (Casciotti et al., 2007). Bottles were

kept frozen after sample collection, though we have sub-

sequently determined in the laboratory that seawater sam-

ples preserved in this way can be kept at room tempera-

ture for at least a year without alteration of NO−2 δ
15N or

δ18O (unpublished data). Samples were analyzed by contin-

uous He flow isotope-ratio mass spectrometry (CF-IRMS;

see below) after chemical conversion to N2O using acetic

acid buffered sodium azide (McIlvin and Altabet, 2005).

Because of high sample pH, the reagent was modified for

NO−2 isotope analysis by increasing the acetic acid concen-

tration to 7.84 M. In-house (i.e., MAA1, δ15N=−60.6 ‰;

MAA2, δ15N= 3.9 ‰; Zh1, δ15N=−16.4 %) and other

laboratory calibration standards (N23, δ15N= 3.7 ‰ and

δ18O= 11.4 ‰; N7373, δ15N=−79.6 ‰ and δ18O= 4.5 ‰;

and N10219; δ15N= 2.8 ‰ and δ18O= 88.5‰; see Casciotti

and McIlvin, 2007) were used for NO−2 δ
15N and δ18O anal-

ysis.

NO−3 samples were stored in 125 mL HDPE bottles

preloaded with 1 mL of 2.5 mM sulfamic acid in 25 % HCl

to both act as a preservative and to remove NO−2 (Granger

and Sigman, 2009). Samples were also kept at room temper-

ature and we have found that they can be stored in this way

for many years without alteration of NO−3 δ15N or δ18O.

Cadmium reduction was used to convert NO−3 to NO−2 prior

to conversion to N2O using the “azide method” (McIlvin and

Altabet, 2005) and IRMS analysis. Standards for NO−3 iso-

tope analysis were N3 (δ15N= 4.7 ‰ and δ18O= 25.6 ‰),

USGS34 (δ15N=−1.8 ‰ and δ18O=−27.9 ‰), and

USGS35 (δ15N= 2.7 ‰ and δ18O= 57.5 ‰) (Casciotti et

al., 2007). The lowest concentration of NO−2 or NO−3 ana-

lyzed for isotopic composition was 0.5 µM, thus δ15N-NO−3
and δ15N-NO−2 could not be measured below 37 m at station

63.

A GV Instruments IsoPrime Isotope Ratio Mass Spec-

trometer (IRMS) coupled to an on-line He continuous-flow

purge and/or trap preparation system was used for isotope

analysis (Sigman et al., 2001; Casciotti et al., 2002; McIl-

vin and Altabet, 2005). N2O produced by the azide reaction

was purged with He from the septum sealed 20 mL vials

and trapped, cryofocused and purified prior to transfer to

the IRMS. Total run time was 700 s sample−1 (McIlvin and

Altabet, 2005). Isotopic values are referenced against atmo-

spheric N2 for δ15N and VSMOW for δ18O. Reproducibility

was 0.2 and 0.5 ‰, respectively.

2.3 N2 /Ar IRMS analysis and calculation of biogenic

N2 and δ15N biogenic N2

The accumulation of biogenic N2 from denitrification and

anammox can be measured directly from precise N2 /Ar

measurements (see above; Richards and Benson, 1961;

Chang et al., 2010; Bourbonnais et al., 2015). As described

in Charoenpong et al. (2014), N2 /Ar samples were collected

from Niskin bottles using 125 mL serum bottles, and all sam-

ples were treated with HgCl2 as a preservative and filled

without headspace. When cavitation bubbles formed from

cooling of warm, near-surface samples, these bubbles were

collapsed and reabsorbed by warming samples in the labora-

tory in a 30–35 ◦C water bath before analysis. N2 /Ar was

measured using an automated dissolved gas extraction sys-

tem coupled to a multicollector IRMS (Charoenpong et al.,

2014). Excess N2 was calculated first from anomalies rela-

tive to N2 /Ar expected at saturation with atmosphere at in

situ temperature and salinity. Locally produced biogenic N2

was obtained by subtracting excess N2 at the corresponding

density surface for waters outside of the ODZ (O2 > 10 µM)
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Figure 1. Station map with satellite data from http://disc.sci.gsfc.nasa.gov/giovanni/. (a) sea surface chlorophyll a concentrations (mg m−3),

(b) nighttime sea surface temperature (◦C).

not affected by N-loss (Chang et al., 2010; Bourbonnais et

al., 2015). δ15N biogenic N2 was calculated from the δ15N-

N2 anomaly as in Bourbonnais et al. (2015). Reproducibility

was better than 0.7 µM for excess N2 and 0.03 ‰ for δ15N-

N2. δ15N of biogenic N2 was calculated by mass balance as

in Bourbonnais et al. (2015).

2.4 Isotope effect (ε) calculations

Isotope effects are estimated using the Rayleigh equations

describing the change in isotope ratio as a function of fraction

of remaining substrate. The following equations are used for

a closed system (Mariotti et al., 1981):

δ15N−NO−3 = δ
15N−NO−3 (f = 1)− ε× ln[f1] or (1)

δ15N−DIN= δ15N−DIN(f = 1)− ε× ln[f2], (2)

where f1 is the fraction of remaining NO−3 and f2 is the frac-

tion of remaining DIN (NO−3 + NO−2 concentrations). δ15N-

DIN is the average δ15N for NO−3 and NO−2 weighted by

their concentrations. The fraction of remaining DIN is a bet-

ter estimation of the overall effective isotope effect for N-loss

(Bourbonnais et al., 2015), while using NO−3 as the basis to

calculate ε specifically targets NO−3 reduction. See below for

details of f value calculation.

The overall isotope effect for N-loss can also be estimated

from the δ15N of biogenic N2 produced:

δ15N−biogenic N2 = δ
15N-DIN(f = 1)

+ ε× f2/[1− f2]× ln[f2], (3)

whereas the closed system equations assume no addition

or loss of substrate or product, corresponding steady-state

open system equations can account for such effects (Altabet,

2005):

δ15N−NO−3 = δ
15N−NO−3 (f = 1)+ ε[1− f1] or (4)

δ15N−DIN= δ15N−DIN(f = 1)+ ε×[1− f2] (5)

δ15N−biogenic N2 = δ
15N−DIN(f = 1)− ε× f2. (6)

For all equations, the slope represents ε and the y inter-

cept is the initial δ15N prior to N-loss. For calculations using

Eqs. (3) and (6) we only used δ15N values associated with

biogenic N2 greater than 7.5 µM because of increasing noise

below this level due to the large atmospheric dissolved N2

background (typically up to ∼ 500 µM).

Since the closed system equations assume no loss or re-

supply of substrate or production in a water parcel, they are

appropriate where there is little mixing and/or advection is

dominant over mixing. The open system equations take into

account supply from or loss to surrounding water parcels, e.g.

mixing dominance. Both cases represent extreme situations.

In the next section, we will estimate and compare ε using

both sets of equations.

To do so, we need to estimate the fraction of NO−3 or DIN

remaining (f ). The assumption of Redfield stoichiometry (as

in Eq. 9) in source waters is typically made:

f1p = [NO−3 ]/Npexpected or (7)

f2p = ([NO−3 ] + [NO−2 ])/Npexpected (8)

Npexpected = 15.8 · ([PO3−
4 ] − 0.3) (9)

Nobserved = [NO−3 ] + [NO−2 ] + [NH+4 ], (10)

where Npexpected is the concentration expected assuming

Redfield stoichiometry. Equation (9) was derived in Chang et

al. (2010) from stations to the west of the ETSP ODZ (143–

146◦W) and takes into account preformed nutrient concen-

trations. In our study, NH+4 generally did not significantly

accumulate, except at station 63, and was thus not included.
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This has been the traditional approach to quantify N-loss in

ODZs (N deficit, Npdef), by comparing observed DIN con-

centrations (Nobserved) to Npexpected:

Npdef = Npexpected−Nobserved. (11)

However, the assumption of Redfield stoichiometry may

not be appropriate in this shallow environment due to prefer-

ential release of PO3−
4 following iron and manganese oxyhy-

droxide dissolution in anoxic sediments (e.g., Noffke et al.,

2012). An alternative method of calculating f makes use of

our biogenic N2 measurements to estimate expected N prior

to N-loss (Nexpected–bio N2) and f values based on it:

Nexpected− bio N2 = [NO−3 ] + [NO−2 ] + 2×[Biogenic N2]

(12)

f1bioN2
= [NO−3 ]/Nexpected− bioN2 or (13)

f2bioN2
= [NO−3 +NO−2 ]/Nexpected− bio N2. (14)

A third way to estimate f is to use NO−3 or DIN concentra-

tions divided by observed maximum NO−3 or DIN concentra-

tions for the source of the upwelled waters (see red rectangles

in Fig. 2).

3 Results

3.1 Hydrographic characterization

During the study period, there was active coastal upwelling

especially at station 63 as seen by relatively low satellite

sea surface temperatures, higher chlorophyll a concentra-

tions, and a shallow oxycline (Fig. 1). A common relation-

ship and narrow range for T and S were found, compara-

ble to T / S signatures for offshore ODZ waters between

∼ 100 and 200 m depths (Bourbonnais et al. 2015), indicat-

ing a common source of water upwelling at these inner shelf

stations (Fig. 2). This is expected in these shallow waters,

where upwelling of the Peru coastal current with low O2 and

high nutrients plays a dominant role (Penven et al., 2005).

O2 increased only in warmer near-surface waters as a con-

sequence of atmospheric exchange. There was a change in

surface water temperature from 15 to 20 ◦C (Fig. 1b) with

distance along the coast (from 12.0 to 14.0◦ S, about 222 km)

that indicates corresponding changes in upwelling intensity.

Stronger local wind forcing likely brought up colder deep

water near station 63.

3.2 Dissolved O2 and nutrient concentrations

As a consequence of active upwelling sourced from the

offshore ODZ, the oxycline was very shallow at our in-

shore stations. O2 was generally depleted below 10 to 20 m

(Fig. 3a) and was always less than 10 µM below 30 m. Be-

cause we are focusing on N-transformations that occur in

the absence of O2, our data analyses will be mainly re-

stricted to samples where O2 concentration is below this

value. Whereas a recent study indicates that denitrification

and anammox are reversibly suppressed at nanomolar O2

levels (Dalsgaard et al., 2014), CTD deployed Seabird O2

sensors are not sufficiently sensitive to detect such low con-

centrations and hence our choice of a 10 µM threshold. In

contrast, NO−2 oxidation, an aerobic process, was shown to

occur even at low to non-detectable O2 (Füssel et al., 2012).

Both Si(OH)4 and PO3−
4 concentrations had very similar

vertical and along section distributions (Fig. 3c, d). Concen-

trations were at a minimum at the surface, presumably due

to phytoplankton uptake, and increased with depth to up to

46 and 3.7 µM, respectively. Station 63 had the highest near-

bottom concentrations, a likely result of release from the sed-

iments, which is futher supported by high near-bottom NH+4
concentrations (up to ∼ 4 µM) as compared to the other sta-

tions (Fig. 3b, c, d).

In contrast to other nutrients, NO−3 and NO−2 concentra-

tions were lowest near-bottom at station 63, only reaching

their maxima above 60 m. Across most of our stations, NO−3
concentration was 22 µM at 20 to 40 m depth but decreased

to near zero deeper within the O2-depleted zone due to mi-

crobially mediated NO−3 reduction (Fig. 4a). NO−2 concen-

trations correspondingly ranged from 6 to 11 µM for O2 con-

centrations less than 10 µM (Fig. 4b). The highest NO−2 con-

centration (11 µM) was found at around 50 m (station 64), but

only reached 6 µM at all other stations.

3.3 NO−
2

and NO−
3

isotope compositions

As a consequence of kinetic isotope fractionation during N-

loss, the N and O isotope composition of NO−3 and NO−2 var-

ied inversely with NO−3 and NO−2 concentrations, with max-

imum δ15N and δ18O values near the bottom at each station.

δ15N-NO−3 increased from about 10 ‰ in surface waters to

up to 50 ‰ in the O2-depleted zone (Fig. 4c), with near bot-

tom values at station 64 significantly higher (50 ‰) than at

the other stations which ranged from 20 to 30 ‰ . δ15N-NO−2
varied from−25 to about 10 ‰ (Fig. 4d), with maximum val-

ues also in deeper waters at station 64.

As expected for NO−3 reduction, δ18O-NO−3 positively co-

varied with δ15N-NO−3 and ranged from 12 to 46 ‰. We

observed an overall linear relationship between δ15N-NO−3
and δ18O-NO−3 with a slope of 0.86, which was signifi-

cantly different than 1 (p value < 0.05), and a y intercept

of 1.90 (r2
= 0.996, see Fig. 5a). NO−3 δ15N and δ18O have

been shown to increase equally (ratio 1 : 1) during assimila-

tory and dissimilatory NO−3 reduction (Casciotti et al., 2002;

Granger et al., 2004, 2008). However, deviations from this

trend have been observed in the ocean and interpreted as ev-

idence for co-occurring NO−3 production processes (Sigman

et al., 2005; Casciotti and McIlvin, 2007; Bourbonnais et al.,

2009, 2015). In this study, we observed a NO−3 δ
18O vs. δ15N

www.biogeosciences.net/13/1453/2016/ Biogeosciences, 13, 1453–1468, 2016
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relationship less than 1, likely originating from NO−2 re-

oxidation to NO−3 in our environmental setting as in Casciotti

and McIlvin (2007). We also observed, for the first time, a

significant correlation between δ15N-NO−2 and δ18O-NO−2 in

the ODZ for our in-shore water stations (Fig. 5b). As in prior

studies (Casciotti and McIlvin, 2007; Casciotti et al., 2013),

no such relationship was observed by us for a nearby set of

offshore stations (see Fig. 5c) where longer NO−2 turnover

times likely facilitated O isotope exchange with water. We

will discuss implications of this unique finding in the next

section.

3.4 The δ15N difference between NO−
3

and NO−
2

The difference in δ15N between NO−3 and NO−2 (1δ15N) re-

flects the combined isotope effects of simultaneous NO−3 re-

duction, NO−2 reduction, and NO−2 oxidation. For NO−3 re-

duction alone, highest 1δ15N values would be around 25 ‰

at steady-state (Cline and Kaplan, 1975; Brandes et al., 1998;

Voss et al., 2001; Granger et al., 2004, 2008). The effect of

NO−2 reduction would be to increase the δ15N of the resid-

ual NO−2 , thus decreasing 1δ15N. In contrast, NO−2 oxida-

tion is associated with an inverse kinetic isotope effect (Cas-

ciotti, 2009) which acts to decrease the residual δ15N of NO−2
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Figure 4. Transects off the Peru coast for (a) NO−
3

concentration (µM) with O2 overlay, (b) NO−
2

concentration (µM), (c) δ15N-NO−
3

(‰)

and (d) δ15N-NO−
2

(‰). Gray region represents approximate bathymetry. No isotopic data are available for the deeper samples collected at

station 63, because NO−
3

and NO−
2

concentrations were below analytical limits (< 0.5 µM).

and hence overall increases the1δ15N. Therefore, following

NO−2 oxidation, 1δ15N may be larger than expected from

NO−3 and NO−2 reduction alone, especially if the system is

not at steady-state (Casciotti et al., 2013). 1δ15N ranged

from 15 to 40 ‰ (average= 29.78 ‰ and median= 32.5 ‰)

for samples with O2 < 10 µM. These results confirm the pres-

ence of NO−2 oxidation for at least some of our depth inter-

vals.

3.5 N deficit, biogenic N2 and δ15N-N2

N deficits, biogenic N2 concentrations, and δ15N-N2 anoma-

lies relative to equilibrium with atmosphere were overall

greater in the O2-depleted zone reaching highest values near

the bottom of station 63 (Fig. 7). N deficit, calculated assum-

ing Redfield stoichiometry (Eqs. 9 to 11), ranged from 17 to

59 µM in this region. The concentration of biogenic N in N2

ranged from 12 to 36 µM-N and, as expected, was strongly

linearly correlated with N deficit (r2
= 0.87; Fig. 8c). How-

ever, the slope of 0.45 for the linear relationship shows bio-

genic N in N2 to be only half that expected from Npdef, a

possible consequence of benthic PO3−
4 release. The linear re-

lationship (r2
= 0.91) observed between biogenic N in N2

and DIN (Fig. 8a) supports a single initial DIN value for

the source waters to our stations and hence validates using

this as a basis for calculating f . The slope of the correla-

tion (0.74) is much closer to 1 as compared to the correlation

with Npdef, further supporting excess PO−3
4 as a contributor

to the latter. However this value is still significantly less than

1, suggesting that biogenic N in N2 may also be underesti-

mated. Because our data are restricted to O2-depleted depths,

it is unlikely that biogenic N2 was lost to the atmosphere. Al-

ternatively, mixing of water varying in N2 /Ar can result in

such underestimates of biogenic N2 when N2 /Ar anoma-

lies are used to calculate excess N2 (see Charoenpong et al.,

2014). As seen below, our estimates of ε are rather insensitive

to choice of Npdef, biogenic N in N2, or DIN concentration

changes as the basis for calculation of f .

The δ15N-N2 anomaly, i.e., the difference between the

δ15N-N2 observed and at equilibrium, derived as in Charoen-

pong et al. (2014), ranged from −0.2 to 0.1 ‰ (Fig. 7c).

The corresponding range in δ15N biogenic N2 at O2 < 10 µM

was from −9.0 to 3.2 ‰. Negative δ15N-N2 anomaly (i.e.,

lower δ15N-biogenic N2) is produced at the onset of N-loss,

because extremely depleted 15N-N2 is first produced. At a

more advanced N-loss stage, we expect δ15N-N2 anomaly

and δ15N-biogenic N2 to increase, which we observed in this

study, as heavier 15N is added to the biogenic N2 pool. The

δ15N-N2 anomaly signal appears small when compared to

the isotopic composition of NO−3 and NO−2 but is (1) ana-

lytically significant and (2) the result of dilution by the large

background of atmospheric N2 (400 to 500 µM N2).

3.6 Isotope effect (ε)

Isotope effects were calculated using Eqs. (1) to (6) to com-

pare closed vs. open system assumptions as well as different

approaches to estimating f . Examples of plots of the closed

system equations with f calculated using biogenic N2, are

shown in Fig. 6. Comparison of results using all three ap-

proaches for calculating f (i.e. Redfield stoichiometry, bio-

genic N2 and observed substrate divided by maximum “up-

welled” concentration, (see Sect. 2.4)) are shown in Table 1

(closed system) and 2 (open system). In the case of the closed
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system, ε values were in all cases lower than canonical ones,

ranging narrowly from∼ 6 ‰ for changes in the δ15N of DIN

to ∼ 14 ‰ for changes in δ15N-NO−3 (Table 1). For the open

system equations, estimated ε was higher and covered a large

and unrealistic range from ∼ 12 ‰ for changes in the bio-

genic N2 to ∼ 63 ‰ for changes in the δ15N of NO−3 . For

our inshore water stations, where we observed a single wa-

ter mass (Fig. 2), a closed system should be a more realistic

approximation of ε. The Rayleigh equations’ y intercepts,

where f = 1, represent the initial δ15N of NO−3 or DIN, and

varied from −0.5 to 10.9 and −21.9 to 8.5 ‰ for closed

and open systems, respectively. The higher end of this range

Table 1. ε for NO−
3

reduction and net N loss estimated from both

DIN consumption and produced biogenic N2 using Rayleigh closed

system equations (Eqs. 1–3). Results are calculated for f based on

either Npexpected (Eqs. 7–9), biogenic N2 (Eqs. 12–14) and mea-

sured substrate divided by maximum (upwelled) substrate concen-

trations (see text, Sect. 2.4). The standard error of the slope (ε) is

shown.

Basis for f ε y intercept r2

δ15N-NO−
3

Npexpected 13.9± 0.7 3.74 0.92

N2 Biogenic 14.3± 0.9 3.71 0.95

[NO−
3

] / [NO−
3

]max 14.7± 0.6 −0.55 0.95

δ15N-DIN Npexpected 6.3± 0.3 7.20 0.92

N2 Biogenic 6.6± 0.4 6.71 0.94

DIN /DINmax 7.4± 0.6 10.90 0.91

δ15N-Biogenic N2 Npexpected 10.5± 1.5 2.94 0.70

N2 Biogenic 10.6± 1.5 3.04 0.72

is more realistic based on prior isotopic measurements for

source waters (e.g., Bourbonnais et al., 2015).

4 Discussion

4.1 Behavior of NO−
2

NO−2 is an important intermediate during either oxidative or

reductive N-cycle pathways and can accumulate at relatively

high concentrations through the ocean. While NO−2 is gener-

ally elevated at the base of the sunlit euphotic zone (i.e. pri-

mary NO−2 maximum; Dore and Karl, 1996; Lomas and Lip-

schultz, 2006), highest concentrations are found in ODZ’s as

part of the secondary NO−2 maximum (Codispoti and Chris-

tensen 1985; Lam et al., 2011). Accordingly, high NO−2 con-

centrations ranging from 7.2 to 10.7 µM were observed at

50–75 m depth in coastal O2-depleted waters in this study as

a likely consequence of dissimilatory NO−3 reduction (e.g.,

Lipschultz et al., 1990; Lam et al., 2009; Kalvelage et al.,

2013).

To assess the influence of the various N cycle processes

that have NO−2 as either a substrate or product, we first ex-

amined the relationship between the δ15N and δ18O of NO−2 .

Several processes can influence the isotopic composition of

NO−2 . NO−3 reduction to NO−2 is associated with a ε of 20

to 30 ‰ (Cline and Kaplan, 1975; Brandes et al., 1998; Voss

et al., 2001; Granger et al., 2004, 2008) and acts to produce

NO−2 depleted in 15N and 18O. In contrast, NO−2 reduction as

part of either anammox, denitrification or DNRA increases

both the δ15N and δ18O of residual NO−2 , with laboratory

and field estimates for ε clustering around 12 to 16 ‰ (Bryan

et al., 1983; Brunner et al., 2013; Bourbonnais et al., 2015).

However, NO−2 oxidation to NO−3 at low or non-detectable

O2 has been shown to be an important sink for NO−2 in ODZs

(e.g. Füssel et al., 2012). Anammox bacteria can also use
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NO−2 as an electron donor during CO2 fixation under anaer-

obic conditions (Strous et al., 2006).

Nitrite oxidation has its own unique set of isotope ef-

fects (Casciotti, 2009; Buchwald and Casciotti, 2010). Nitrite

oxidation incurs an unusual inverse N isotope effect vary-

ing from −13 ‰ for aerobic (Casciotti, 2009) to −30 ‰ for

anammox-mediated NO−2 oxidation (Brunner et al., 2013),

resulting in lower δ15N for NO−2 as it is oxidized to NO−3 ,

and increasing 1δ15N. Moreover, enzyme catalysis associ-

ated with NO−2 oxidation is readily reversible (Friedman et
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Figure 7. N deficit, biogenic N in N2 and δ15N-N2 anomaly with

O2 overlaid. (a) N deficit calculated using PO3−
4

(µM) (Npdef) and

assuming Redfield stoichiometry (see Eqs. 9, 10 and 11, Sect. 2.4).

(b) biogenic N in N2 (µM). (c) δ15N-N2 anomaly relative to equi-

librium with atmosphere (‰). Biogenic N2 or δ15N-N2 anomaly

were not measured at stations 62, 64 and 66.

al., 1986) also causing O isotope exchange between NO−2
and water (Casciotti et al., 2007). O atom incorporation dur-

ing both NH+4 and NO−2 oxidation have also been shown to

occur with significant isotope effect, such that the δ18O of

newly microbially produced NO−3 in the ocean range from

−1.5 to 1.3 ‰ (Buchwald and Casciotti, 2012).

Past studies have found NO−2 δ
18O values in ODZ’s in

isotope equilibrium with water as a likely consequence of

relatively long turnover time (e.g., Buchwald and Casciotti,

2013; Bourbonnais et al., 2015). O isotope exchange involves

the protonated form, HNO2, but because of its high pKa as

compared to NO−3 , this process can occur even at neutral to

alkaline ocean pH on a timescale of 2 to 3 months at en-

vironmentally relevant temperatures (Casciotti et al., 2007).

NO−2 δ
18O isotopic composition at equilibrium with water is

a function of the δ18O of water and temperature (+14 ‰ for

seawater at 22 ◦C) (Casciotti et al., 2007; Buchwald and Cas-

ciotti, 2013) and is independent of its δ15N value such that

plots of NO−2 δ
18O vs. δ15N usually have a slope of near zero.

This is seen in our NO−2 data from offshore stations occupied

during M90 (Fig. 5c).
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We observed, for the first time, a significant linear re-

lationship for NO−2 δ
18O vs. δ15N at our inshore stations

(slope= 0.64± 0.07, r2
= 0.59, p value= 3× 10−6) where

O2 < 10 µM (Fig. 5b). Coupled δ15N and δ18O effects for

NO−2 have not been as well studied as NO−3 . Nevertheless,

if NO−2 turnover was faster than equilibration time with wa-

ter, NO−3 and NO−2 reduction whether as part of the denitri-

fication, anammox or DNRA pathways, should also produce

a positive relationship between NO−2 δ
15N and δ18O. In con-

trast to our offshore stations (Fig. 5c), this positive relation-

ship thus demonstrates that the oxygen isotopic composition

of NO−2 is not in equilibrium with water due to both rapid

NO−2 turnover and the dominance of NO−2 reduction over ox-

idation in Peru coastal waters. Higher rates for aerobic NH+4
and NO−2 oxidation, as well as anaerobic NO−3 reduction to

NO−2 , and further reduction to NH+4 (DNRA) or N2, have

been reported in shallow waters off Peru presumably due to

increased coastal primary production and organic matter sup-

ply to the in-shore OMZ (e.g. Codispoti et al., 1986; Lam et

al., 2011; Kalvelage et al., 2013). However, as our observa-

tions are restricted to anoxic waters, only high rates of N-loss

could explain this more rapid NO−2 turnover.

In principal, we can estimate NO−2 turnover time from

knowledge of rates for exchange with water and assumptions

of the δ18O vs. δ15N slope expected in the absence of ex-

change. Unfortunately, the slope of the relationship between

NO−2 δ
18O vs. δ15N expected in the absence of equilibration

with water is not yet known. An upper limit for turnover time

for NO−2 can be estimated based on equilibration time as a

function of in situ pH and temperature (Buchwald and Cas-

ciotti, 2013). During the M91 cruise in December, subsur-

face temperature was 13 to 15 ◦C along our transect and cor-

responding pH was near 7.8 (Michelle Graco, unpublished

data). Assuming the NO−2 pool is in steady-state, we esti-

mated an equilibration time of up to ∼ 40 days for pH near

7.8 (estimated from equation 1 and Fig. 2 in Buchwald and

Casciotti, 2013). A turnover time of up to 40 days implies a

flux of N through the NO−2 pool of at least 0.21 µM d−1, as

estimated from the maximum NO−2 concentration observed

in this study divided by this estimated turnover time. As-

suming steady-state, this range also approximates the rates

of NO−3 reduction as well as NO−2 oxidation plus production

of N2 from NO−2 . This estimated flux is consistent with mea-

sured high NO−3 reduction and NO−2 oxidation rates of up to

∼1 µM d−1 in Peru coastal waters (< 600 m depth, Kalvelage

et al., 2013).

NO−2 oxidation is a chemoautotrophic process that re-

quires a thermodynamically favorable electron acceptor such

as O2. As mentioned above, NO−2 oxidation appears to oc-

cur in ODZ’s at low or non-detectable O2 (e.g. Füssel et

al., 2012) despite lack of knowledge of its thermodynam-

ically favorable redox couple. The difference in δ15N be-

tween NO−2 and NO−3 (1δ15N = δ15N-NO−3 − δ
15N-NO−2
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tions less than 10 µM. Biogenic N2 was not measured for stations

62, 64 and 66. Significant correlation coefficients at a 0.05 signifi-

cance level are denoted by *.

see Sect. 3.3) is further evidence for the presence of NO−2
oxidation in the ODZ (e.g. Casciotti et al., 2013). At steady-

state, and in the absence of NO−2 oxidation, 1δ15N should

be no more than the ε for NO−3 reduction (20 to 30 ‰) mi-

nus the ε for NO−2 reduction by denitrifying or anammox

bacteria (12–16 ‰; Bryan et al., 1983; Brunner et al., 2013;

Bourbonnais et al., 2015) or 8–18 ‰ . Our results range from

15–40 ‰ and average 29.8 ‰ for samples with O2 concen-

trations < 10 µM.
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The inverse kinetic isotope effect associated with NO−2 ox-

idation is likely responsible for these high1δ15N values (e.g.

Casciotti and Buchwald, 2012; Casciotti et al., 2013). Taking

all isotope effects into account, the following equation can be

derived to estimate 1δ15N at steady-state:

1δ15N(steady state)= εNO3−red− (1− γ ) (15)

× εNO2−red− γ × εNO2−oxid,

where γ is the fraction of NO−2 oxidized back to NO−3 . High-

est values (over 30 ‰) are found between 50 and 100 m, im-

plying greater importance for NO−2 oxidation in deeper wa-

ters.

Given that εNO2−oxid has been reported to be −13 ‰ for

aerobic NO−2 oxidation and using the literature ranges for

εNO3−red and εNO2−red above, our observed 1δ15N implies

that up to 100 % of NO−2 produced by NO−3 reduction could

be oxidized back to NO−3 . This estimate is higher than ratios

of NO−2 oxidation /NO−3 reduction of up to 54 % for the Pe-

ruvian coastal ODZ derived from direct rate measurements

(Lam et al., 2009; Kalvelage et al., 2013), and should thus

be considered as an upper limit. Alternatively, NO−2 oxida-

tion also occurs as part of the overall metabolism of anam-

mox bacteria (Strous et al., 2006) which can be the domi-

nant N2 producers in the Peru ODZ (Kalvelage et al., 2013).

A large inverse kinetic ε for NO−2 oxidation of ∼−30 ‰

has been observed for anammox bacteria in culture (Brun-

ner et al., 2013). If this is the sole pathway for NO−2 oxida-

tion, our data suggest NO−2 oxidation up to only ∼ 80 % of

total NO−3 reduction. However, anammox bacteria only oxi-

dize a minor fraction of NO−2 to NO−3 in culture. At the same

time, estimates of NO−2 oxidation (8.48 to 928 nM d−1) are

significantly higher than N-loss rates by anammox (2.84 to

227 nmol N L−1 d−1) on the Peruvian shelf (Kalvelage et al.,

2013), clearly indicating non-anammox related nitrite oxida-

tion.

The deviations from a 1 : 1 relationship for NO−3 δ
18O

and δ15N can also be indicative of NO−2 oxidation. During

NO−3 uptake or dissimilative NO−3 reduction, NO−3 δ
15N and

δ18O increase equally with a ratio of 1:1 (Granger et al.,

2004, 2008). We observed a slope of about 0.86 (Fig. 5a)

for the NO−3 δ
18O vs. δ15N relationship in the in-shore Peru

ODZ, similar to recent off-shore observations (Bourbonnais

et al., 2015). Prior reports of deviations toward higher val-

ues for the slope were indicative of addition of newly nitri-

fied NO−3 from a relatively low δ15N source (e.g. see Sig-

man et al., 2005; Bourbonnais et al., 2009). Our observed

deviation toward slopes < 1 can instead be explained by the

addition of newly nitrified NO−3 with a lower δ18O-NO−3 ,

mostly derived from water (Andersson and Hooper, 1983),

relative to the high ambient δ18O-NO−3 values. In fact, a

slope for δ18O : δ15N of either greater or less than 1 can

be observed, depending on initial environmental NO−3 iso-

topic composition relative to any in situ sources (Casciotti

et al., 2013). Casciotti and Buchwald (2012) showed model

results where NO−2 oxidation generally produces a slope < 1

for the NO−3 δ
18O vs. δ15N relationship, when the NO−3 δ

15N

and δ18O are higher than ∼ 15 ‰ as observed in Casciotti et

al. (2013) and Bourbonnais et al. (2015).

4.2 Isotope effects for N-loss

As described above, the Rayleigh fractionation equations

(Eqs. 1 to 6) are used here to estimate ε values (Mariotti

et al., 1981; Altabet, 2005) and examine the significance of

calculations using (a) different approaches for calculating f

(Eqs. 7 and 14), (b) changes in the δ15N of substrate (DIN)

vs. changes in the δ15N of product, and (c) closed vs. open

system equations. This approach provides redundancy in our

estimates of ε and tests implied assumptions including N and
15N balance between NO−3 or DIN loss and the accumulation

of biogenic N2.

Linear regression coefficients for ε calculated using the

different approaches presented in Sect. 2.4 are listed in Ta-

bles 1 and 2. For example, Rayleigh closed system plots for

δ15N-NO−3 , δ15N-DIN, or δ15N biogenic N2 as a function

of f2bioN2
are shown in Fig. 6. Surprisingly, ε values esti-

mated from the slope of these relationships are not sensi-

tive to choice of method for calculating f despite the lack of

1 : 1 correspondence between different bases (Npexpected, bio-

genic N2, or [NO−3 ] / [NO−3 ]max). In the case of ε calculated

from changes in δ15N-DIN, ε ranged narrowly with choice

of f from 6.3 to 7.4 ‰ with standard errors on the slope of

< 0.6 ‰ (Table 1). As there was no significant difference be-

tween bases for calculating f , it appears that all three of our

approaches are valid for this purpose.

However, ε for N-loss (closed system) does vary signif-

icantly between calculations using changes in δ15N-NO−3 ,

δ15N-DIN, or δ15N biogenic N2. ε is largest for changes

in δ15N-NO−3 (∼ 14 ‰) and smallest for changes in δ15N-

DIN (∼ 7 ‰). ε based on δ15N biogenic N2 is intermedi-

ate (∼ 11 ‰). The latter two, using DIN or biogenic N2 as

the basis to calculate ε, are more representative of N-loss.

Calculations based on changes in δ15N-NO−3 are affected

by NO−2 accumulation and isotope effects of NO−2 oxida-

tion (see above). The 4 ‰ difference in ε calculated from

changes in δ15N of biogenic N2 vs. δ15N of DIN may arise

from the contribution of NH+4 derived from organic matter to

biogenic N2 via the anammox process. Supporting this hy-

pothesis, NH+4 accumulation (5.3–7.5 µM) associated with a

relatively low δ15N-NH+4 of 3.8 to 6.1 ‰ was observed at

125 and 200 m bottom water depths at shallow stations lo-

cated in the studied area (∼ 12.3◦ S and 77.3◦W) in January

2013 (unpublished results). A contribution of NH+4 from or-

ganic material and consumption by anammox could therefore

supply comparatively lower δ15N to the biogenic N2 pool, in-

creasing ε.
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Table 2. ε for NO−
3

reduction, and net N loss estimated from both

DIN consumption and produced biogenic N2 using Rayleigh open

system equations (Eqs. 4–6). Results are calculated for f based on

either Npexpected (Eqs. 7–9), biogenic N2 (Eqs. 12–14), and mea-

sured substrate divided by maximum (upwelled) substrate concen-

trations (see text, Sect. 2.4). The standard error of the slope (ε) is

shown.

Basis for f ε y intercept r2

δ15N-NO−
3

Npexpected 63.0± 4.5 −18.42 0.86

N2 Biogenic 66.30± 6.2 −21.92 0.87

[NO−
3

] / [NO−
3

]max 38.9± 2.7 6.19 0.87

Npexpected 17.4± 1.2 3.26 0.88

δ15N-DIN N2 Biogenic 20.0± 1.8 1.72 0.89

DIN /DINmax 13.2± 0.9 8.45 0.91

δ15N-Biogenic N2 Npexpected 12.3± 1.9 1.94 0.67

N2 Biogenic 14.15± 2.1 2.25 0.68

The different approaches for estimating the ε for N-loss

can also be evaluated by examining the initial substrate δ15N

predicted where f = 1 for each set of regressions. In the case

of changes in δ15N-DIN and using Npexpected or biogenic N2

as bases for f , realistic values are found consistent with the

source of upwelled waters of 6 to 7 ‰ (Table 1; also see

Ryabenko et al., 2012). For regressions based on changes in

δ15N-biogenic N2, initial δ15N values are somewhat lower

(∼ 3 ‰), possibly due to a source from organic N decompo-

sition.

Estimates of ε using open-system equations are generally

much higher than for closed system equations particularly for

changes in δ15N-NO−3 with unrealistically high values (39–

63 ‰; Table 2). However, values for both closed and open

systems tended to converge for estimates based on changes

in δ15N-DIN or δ15N-biogenic N2 with the latter having no

significant difference. Estimates of substrate initial δ15N us-

ing the open system equations range widely and do not con-

sistently reflect realistic values (Table 2).

Closed system estimates of ε are likely more reliable in our

setting because of low likelihood of mixing between water

masses of contrasting characteristics on the shelf. Tempera-

ture and salinity in the ODZ at our stations narrowly ranged

from 13.5 to 15 ◦C and 34.88 to 34.98 (Fig. 2), similar to

T / S signatures from offshore source waters (Bourbonnais

et al., 2015), and suggestive of a single water mass. Accord-

ingly, as in Bourbonnais et al. (2015), we view the closed

system equations as most reliable with a value of ∼ 6.5 ‰

for ε based on changes in δ15N DIN as the likely best es-

timate. However, given the overlap with the results of open

system equations for changes in δ15N of biogenic N2, an up-

per bound of∼ 11 ‰ appears appropriate. This range in ε for

N-loss falls below the results of Bourbonnais et al. (2015)

for a near-coastal eddy in the same region and time period

(∼ 14 ‰) and is much less than the canonical range of 20

to 30 ‰ (Brandes et al., 1998; Voss et al., 2001; Granger et

al., 2008). As discussed in Bourbonnais et al. (2015), a lower

overall ε for net N-loss could help resolve any imbalance in

the oceanic N-budget, by decreasing the ratio of sedimen-

tary and water-column N-loss necessary to account for the

observed δ15N of mean ocean NO−3 .

There are several reasonable explanations for these rela-

tively low ε values in coastal waters. These include higher

microbial growth rates associated with higher productivity,

which would shift biochemical rate limitation away from en-

zyme reactions to membrane transport with low fractionation

potential (e.g. Wada and Hattori, 1978). Another is greater

influence from benthic N cycling processes in our relatively

shallow inshore system as compared to deeper waters. Sedi-

ment N-loss has been shown to incur low ε due to, in anal-

ogous fashion to the affect of microbial growth rate, domi-

nance of substrate transport limitation through the sediment

(Brandes and Devol, 1997). This possibility will be explored

further in the next section. Unlikely explanations for our rel-

atively low ε values for N-loss include the effects of decreas-

ing NO−3 concentration (Kritee et al., 2012) and contributions

from organic N via anammox to biogenic N2. Lack of curva-

ture in the Rayleigh plots demonstrates a lack of dependence

of substrate concentration (Fig. 6a, b) as the range in f cor-

responds to a large range in NO−3 or DIN concentrations. The

possible effects of contributions from organic N to biogenic

N2 has already been taken into account in calculations based

on changes in the δ15N of biogenic N2, as discussed above.

4.3 Using ε values for estimating sediment N-loss

The low ε value we observe for water column N-loss at our

inshore stations may be explained by contributions from sed-

iment N-loss (e.g. see Sigman et al., 2003). If so, observed ε

for N-loss in the water-column should be the weighted aver-

age of the actual ε values for N-loss in the water column and

sediments:

εobs = εwc× (1−Psed)+ εsed×Psed, (16)

where εwc and εsed are the isotope effect of water column

and sediments and Psed is the proportion of water column

and sedimentary N-loss, respectively. We take 6.8± 0.5 ‰ as

the value for εobs (Fig. 6, Table 1), a value of 13.8± 1.3 ‰

for εwc as estimated for offshore waters by Bourbonnais et

al. (2015), and a εsed of 1.5 ‰ as in Sigman et al. (2003).

From these numbers, we estimated that the proportion of N-

loss due to sedimentary N-loss could be up to ∼ 60 % (48 to

64 %) at our coastal stations, which is in the same range than

previously reported for other marine coastal environments,

e.g. Saanich Inlet (also up to 60 %; Bourbonnais et al., 2013).

Our estimate is higher than the 25 % of benthic vs. total N-

loss from a reaction-diffusion model and direct flux measure-

ments for the same coastal region off Peru (Kalvelage et al.,

2013). However, our comparison to direct measurements of

fluxes should be considered tentative as they are made at sin-

gle locations over relatively short time periods are thus sub-

ject to considerable spatial and temporal heterogeneity.
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5 Conclusions

The inshore Peru ODZ is distinguished from offshore by its

high productivity as a consequence of coastal upwelling as

well as possible greater influence from benthic processes. To

examine impact on N-loss processes and their isotope effects,

we investigated the dynamics of N and O isotope of NO−2 and

NO−3 at six coastal stations off Peru.

We found that N-loss representing the net effect of partial

denitrification, anammox, and nitrification produced, in sum,

large variations in isotopic composition. NO−2 δ
15N ranged

from −20 to 10 ‰ and NO−3 δ
15N ranged from 10 to 50 ‰.

Generally, NO−3 and NO−2 isotope values varied inversely

with their concentrations as expected for Rayleigh-like frac-

tionation effects. Isotope values were usually higher in low-

O2 near bottom waters where N species concentrations were

also relatively low.

We observed, for the first time, a positive linear relation-

ship between NO−2 δ
15N and δ18O at our inshore stations.

In offshore ODZ waters, such a relationship has never pre-

viously been observed as NO−2 δ
18O reflected equilibration

with water in these regions (Buchwald and Casciotti, 2013).

Our results suggest a turnover time for NO−2 faster than the

equilibration time with water and the effect of NO−2 oxida-

tion over NO−2 reduction in these highly productive coastal

waters. We estimated an NO−2 turnover time of up to ∼ 40

days from our data.

The difference in δ15N between NO−3 and NO−2 (1δ15N)

was high, reaching up to 40‰ in deeper waters, and was

greater than expected from NO−3 and NO−2 reduction only.

The influence of NO−2 oxidation is consistent with this ob-

servation due to its inverse fractionation effect (Casciotti,

2009). Additional evidence for NO−2 oxidation is found in

the relationship between NO−3 δ15N and δ18O. NO−3 reduc-

tion alone is expected to produce a 1 : 1 relationship (Granger

et al., 2008). While we observed a linear relationship be-

tween NO−3 δ
15N and δ18O, the slope of 0.86 is indicative

of simultaneous addition of NO−3 with relatively low δ18O,

also consistent with a role for NO−2 oxidation at our coastal

sites. However, a favorable thermodynamic couple for NO−2
oxidation in the absence of O2 in these waters remains un-

known.

A number of different approaches for estimating ε for N-

loss were compared including choice of N form for changes

in δ15N (NO−3 , DIN, or biogenic N2), closed vs. open sys-

tem Rayleigh equations, and the basis for calculating the de-

nominator in f (Npexpected, biogenic N2, or maximum NO−3 ).

For the latter, there was little difference in estimated ε de-

spite discrepancies between the removal of NO−3 and ap-

pearance of N2 estimated from them. Observation of a sin-

gle water mass (T − S plot) in our coastal region as well

as more realistic ranges for derived ε and initial δ15N in-

dicated that closed system assumptions were more realis-

tic. Using closed system equations, relatively low ε values

were calculated; ∼ 7 ‰ for changes in the δ15N of DIN and

∼ 11 ‰ for changes in the δ15N of biogenic N2. As in Bour-

bonnais et al. (2015), ε calculated from changes in the δ15N

of NO−3 alone was not representative of the ε for overall N-

loss in consideration of the build up of NO−2 with distinct

δ15N. These estimates for ε for net N-loss are lower than

recently reported for a nearby offshore eddy with intense N-

loss (∼ 14 ‰; Bourbonnais et al., 2015). This lower ε may

be attributed to the influence of sedimentary N-loss on the

Peruvian shelf (e.g., Bohlen et al., 2011) with a highly sup-

pressed ε on the overlying water column at our shallow sta-

tions. Given this assumption, we estimate that sedimentary

N-loss (by both denitrification and anammox) could account

for up to 60 % of the total N-loss in in shore Peru ODZ wa-

ters.

Our results further support geographical variations in the

ε of N-loss in ODZs, possibly related to the effects of vary-

ing primary productivity and microbial growth rates on the

expression of ε and partitioning between water-column and

sedimentary denitrification. These variations need to be con-

sidered in future global isotopic N budget (e.g. see Brandes

and Devol, 2002), potentially bringing the global N budget

more in balance. This is further supported by the relatively

lower ε for N-loss of ∼ 14 ‰ recently observed offshore in

the ETSP ODZ by Bourbonnais et al. (2015). A lower water-

column ε for N-loss also decreases the fraction of sedimen-

tary denitrification needed to balance the global isotopic N

budget (Brandes and Devol, 2002; Altabet, 2007).
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