72 research outputs found
Electrokinetic and hydrodynamic properties of charged-particles systems: From small electrolyte ions to large colloids
Dynamic processes in dispersions of charged spherical particles are of
importance both in fundamental science, and in technical and bio-medical
applications. There exists a large variety of charged-particles systems,
ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized
colloids. We review recent advances in theoretical methods for the calculation
of linear transport coefficients in concentrated particulate systems, with the
focus on hydrodynamic interactions and electrokinetic effects. Considered
transport properties are the dispersion viscosity, self- and collective
diffusion coefficients, sedimentation coefficients, and electrophoretic
mobilities and conductivities of ionic particle species in an external electric
field. Advances by our group are also discussed, including a novel
mode-coupling-theory method for conduction-diffusion and viscoelastic
properties of strong electrolyte solutions. Furthermore, results are presented
for dispersions of solvent-permeable particles, and particles with non-zero
hydrodynamic surface slip. The concentration-dependent swelling of ionic
microgels is discussed, as well as a far-reaching dynamic scaling behavior
relating colloidal long- to short-time dynamics
Analysis of Plant Growth-Promoting Effects of Fluorescent Pseudomonas Strains Isolated from Mentha piperita Rhizosphere and Effects of Their Volatile Organic Compounds on Essential Oil Composition
Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25,SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25,SJ48 and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present
Aprendizaje Móvil: La nueva generación en Educación a Distancia
Desde sus orígenes, la Educación a Distancia (EaD) constituyó una herramienta de inclusión social y educativa, que facilitó el acceso a la educación de segmentos de población que no pueden asistir regularmente a clases o que residen en zonas donde la oferta educativa es inexistente o insuficiente. Las nuevas tecnologías de información y comunicación (TIC) se fueron incorporando para mejorar el accesoy la interactividad, así como la variedad y la calidad de los materiales. Actualmente, están surgiendo nuevas necesidades de inclusión impulsadas por la rápida erosión del conocimiento y la modificación en las condiciones de trabajo favorecidas por las nuevas tecnologías- que llevan a una gran proporción de la población económicamente activa a realizar estudios a distancia para mantener su empleabilidad, aprender las normas y procedimientos de la organización que los emplea, y/o acceder al trabajo flexible. Las TIC- particularmente, los dispositivos móviles permitenque la EaD nos acompañe adonde vayamos y esté disponible cuando y donde tengamos tiempo para estudiar. Pero son tecnologías disruptoras que están acompañadas de nuevas pautas culturales que cambiarán la EaD, no solo en la forma operativa de proveer el servicio, sino también en la forma de enseñar y aprender. En esta ponencia proponemos un nuevo modelo educativo de EaD basado en el aprendizaje móvil -el cual estamos desarrollando actualmente en el marco de un proyecto de investigación y desarrollo- que se enmarca dentro de una nueva generación de opciones de EaD. Se identificarán también algunos obstáculos en este camino y posibles formas de resolverlos
Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study
We use lattice Boltzmann simulations, in conjunction with Ewald summation
methods, to investigate the role of hydrodynamic interactions in colloidal
suspensions of dipolar particles, such as ferrofluids. Our work addresses
volume fractions of up to 0.20 and dimensionless dipolar interaction
parameters of up to 8. We compare quantitatively with Brownian
dynamics simulations, in which many-body hydrodynamic interactions are absent.
Monte Carlo data are also used to check the accuracy of static properties
measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic
interactions slow down both the long-time and the short-time decays of the
intermediate scattering function , for wavevectors close to the peak of
the static structure factor , by a factor of roughly two. The long-time
slowing is diminished at high interaction strengths whereas the short-time
slowing (quantified via the hydrodynamic factor ) is less affected by the
dipolar interactions, despite their strong effect on the pair distribution
function arising from cluster formation. Cluster formation is also studied in
transient data following a quench from ; hydrodynamic interactions
slow the formation rate, again by a factor of roughly two
Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate
During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55(Gag) is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4(+) T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55(Gag) membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55(Gag) with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.Universidad de Buenos Aires and CONICET doctoral fellowships, Agencia Nacional de Pro-
moción Científica y Tecnológica (Argentina) grants: (2010-1681, 2012-00353), Creative and Novel
Ideas in HIV Research Program, University of Alabama at Birmingham Center for AIDS Research funding grant P30 AI027767-24
On measuring colloidal volume fractions
Hard-sphere colloids are popular as models for testing fundamental theories
in condensed matter and statistical physics, from crystal nucleation to the
glass transition. A single parameter, the volume fraction (phi), characterizes
an ideal, monodisperse hard-sphere suspension. In comparing experiments with
theories and simulation, researchers to date have paid little attention to
likely uncertainties in experimentally-quoted phi values. We critically review
the experimental measurement of phi in hard-sphere colloids, and show that
while statistical uncertainties in comparing relative values of phi can be as
low as 0.0001, systematic errors of 3-6% are probably unavoidable. The
consequences of this are illustrated by way of a case study comparing
literature data sets on hard-sphere viscosity and diffusion.Comment: 11 page
Aspects of the dynamics of colloidal suspensions: Further results of the mode-coupling theory of structural relaxation
Results of the idealized mode-coupling theory for the structural relaxation
in suspensions of hard-sphere colloidal particles are presented and discussed
with regard to recent light scattering experiments. The structural relaxation
becomes non-diffusive for long times, contrary to the expectation based on the
de Gennes narrowing concept. A semi-quantitative connection of the wave vector
dependences of the relaxation times and amplitudes of the final
-relaxation explains the approximate scaling observed by Segr{\`e} and
Pusey [Phys. Rev. Lett. {\bf 77}, 771 (1996)]. Asymptotic expansions lead to a
qualitative understanding of density dependences in generalized Stokes-Einstein
relations. This relation is also generalized to non-zero frequencies thereby
yielding support for a reasoning by Mason and Weitz [Phys. Rev. Lett {\bf 74},
1250 (1995)]. The dynamics transient to the structural relaxation is discussed
with models incorporating short-time diffusion and hydrodynamic interactions
for short times.Comment: 11 pages, 9 figures; to be published in Phys. Rev.
Diffusion in crowded biological environments: applications of Brownian dynamics
Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mgml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions between macromolecules may hinder diffusion - a major process determining metabolism, transport, and signaling. Also, the crowded media can alter, both qualitatively and quantitatively, the reactions in vivo in comparison with their in vitro counterparts. This review focuses on recent developments in particle-based Brownian dynamics algorithms, their applications to model diffusive transport in crowded systems, and their abilities to reproduce and predict the behavior of macromolecules under in vivo conditions
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Sp1 Expression Is Disrupted in Schizophrenia; A Possible Mechanism for the Abnormal Expression of Mitochondrial Complex I Genes, NDUFV1 and NDUFV2
The prevailing hypothesis regards schizophrenia as a polygenic disease, in which multiple genes combine with each other and with environmental stimuli to produce the variance of its clinical symptoms. We investigated whether the ubiquitous transcription factor Sp1 is abnormally expressed in schizophrenia, and consequently can affect the expression of genes implicated in this disorder. promoter by binding to its three GC-boxes. Both activation and binding were inhibited by mithramycin.These findings suggest that abnormality in Sp1, which can be the main activator/repressor or act in combination with additional transcription factors and is subjected to environmental stimuli, can contribute to the polygenic and clinically heterogeneous nature of schizophrenia
- …