42 research outputs found

    Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels

    Get PDF
    The structure of model gluten protein gels prepared in ethanol/water is investigated by small angle X-ray (SAXS) and neutrons (SANS) scattering. We show that gluten gels display radically different SAXS and SANS profiles when the solvent is (at least partially) deuterated. The detailed analysis of the SANS signal as a function of the solvent deuteration demonstrates heterogeneities of sample deuteration at different length scales. The progressive exchange between the protons (H) of the proteins and the deuteriums (D) of the solvent is inhomogeneous and 60 nm large zones that are enriched in H are evidenced. In addition, at low protein concentration, in the sol state, solvent deuteration induces a liquid/liquid phase separation. Complementary biochemical and structure analyses show that the denser protein phase is more protonated and specifically enriched in glutenin, the polymeric fraction of gluten proteins. These findings suggest that the presence of H-rich zones in gluten gels would arise from the preferential interaction of glutenin polymers through a tight network of non-exchangeable intermolecular hydrogen bonds.Comment: Soft Matter, Royal Society of Chemistry, 201

    Genes Involved in Susceptibility to Obesity and Emotional Eating Behavior in a Romanian Population

    Get PDF
    Obesity, a significant public health concern with high prevalence in both adults and children, is a complex disorder arising from the interaction of multiple genes and environmental factors. Advances in genome-wide association studies (GWAS) and sequencing technologies have identified numerous polygenic causes of obesity, particularly genes involved in hunger, satiety signals, adipocyte differentiation, and energy expenditure. This study investigates the relationship between six obesity-related genes (CLOCK, FTO, GHRL, LEP, LEPR, MC4R) and their impact on BMI, WC, HC, WHR, and emotional eating behavior in 220 Romanian adults. Emotional eating was assessed using the validated Emotional Eating Questionnaire (EEQ). Our analysis revealed significant variability in obesity-related phenotypes and emotional eating behaviors across different genotypes. Specifically, CLOCK/CC, FTO/AA, and LEP/AA genotypes were strongly associated with higher obesity metrics and emotional eating scores, while GHRL/TT and MC4R/CC were linked to increased BMI and WHR. The interplay between genetic predisposition and emotional eating behavior significantly influenced BMI and WHR, indicating a complex relationship between genetic and behavioral factors. This study, the first of its kind in Romania, provides a foundation for targeted interventions to prevent and reduce obesity and suggests potential strategies for gene expression modulation to mitigate the effects of emotional eating. Adopting a ‘One Health’ approach by creating an evidence base derived from both human and animal studies is crucial for understanding how to control obesity

    Thick collagen-based 3D matrices including growth factors to induce neurite outgrowth

    Get PDF
    Designing synthetic microenvironments for cellular investigations is a very active area of research at the crossroads of cell biology and materials science. The present work describes the design and functionalization of a three-dimensional (3D) culture support dedicated to the study of neurite outgrowth from neural cells. It is based on a dense self-assembled collagen matrix stabilized by 100-nm wide interconnected native fibrils without chemical crosslinking. The matrices were made suitable for cell manipulation and direct observation in confocal microscopy by anchoring them to traditional glass supports with a calibrated thickness of ∼50 μm. The matrix composition can be readily adapted to specific neural cell types, notably by incorporating appropriate neurotrophic growth factors. Both PC-12 and SH-SY5Y lines respond to growth factors (nerve growth factor and brain-derived neurotrophic factor, respectively) impregnated and slowly released from the support. Significant neurite outgrowth is reported for a large proportion of cells, up to 66% for PC12 and 49% for SH-SY5Y. It is also shown that both growth factors can be chemically conjugated (EDC/NHS) throughout the matrix and yield similar proportions of cells with longer neurites (61% and 52%, respectively). Finally, neurite outgrowth was observed over several tens of microns within the 3D matrix, with both diffusing and immobilized growth factors

    Protocol per a la vigilància i el control de la febre del Nil occidental

    Get PDF
    Protocol; Vigilància; Control; Febre del Nil occidentalProtocolo; vigilancia; Control; Fiebre del Nilo occidentalProtocol; Surveillance; Control; West Nile VirusL’objectiu d’aquest protocol és oferir una guia de vigilància i control per tal d’evitar l’aparició de casos humans ja siguin esporàdics o en brots epidèmics de febre del VNO, mitjançant la detecció dels focus de circulació del virus, així com dels casos en hostes animals o en humans

    Fungal Planet description sheets: 1478-1549

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia, Aschersonia mackerrasiae on whitefly, Cladosporium corticola on bark of Melaleuca quinquenervia, Penicillium nudgee from soil under Melaleuca quinquenervia, Pseudocercospora blackwoodiae on leaf spot of Persoonia falcata, and Pseudocercospora dalyelliae on leaf spot of Senna alata. Bolivia, Aspicilia lutzoniana on fully submersed siliceous schist in high-mountain streams, and Niesslia parviseta on the lower part and apothecial discs of Erioderma barbellatum onatwig. Brazil, Cyathus bonsai on decaying wood, Geastrum albofibrosum from moist soil with leaf litter, Laetiporus pratigiensis on a trunk of a living unknown hardwood tree species, and Scytalidium synnematicum on dead twigs of unidentified plant. Bulgaria, Amanita abscondita on sandy soil in a plantation of Quercus suber. Canada, Penicillium acericola on dead bark of Acer saccharum, and Penicillium corticola on dead bark of Acer saccharum. China, Colletotrichum qingyuanense on fruit lesion of Capsicum annuum. Denmark, Helminthosphaeria leptospora on corticioid Neohypochnicium cremicolor. Ecuador (Galapagos), Phaeosphaeria scalesiae on Scalesia sp. Finland, Inocybe jacobssonii on calcareouss oils in dry forests and park habitats. France, Cortinarius rufomyrrheus on sandy soil under Pinus pinaster, and Periconia neominutissima on leaves of Poaceae. India, Coprinopsis fragilis on decaying bark of logs, Filoboletus keralensis on unidentified woody substrate, Penicillium sankaranii from soil, Physisporinus tamilnaduensis on the trunk of Azadirachta indica, and Poronia nagaraholensis on elephant dung. Iran, Neosetophoma fic on infected leaves of Ficus elastica. Israel, Cnidariophoma eilatica (incl. Cnidariophoma gen. nov.) from Stylophora pistillata. Italy, Lyophyllum obscurum on acidic soil. Namibia, Aureobasidium faidherbiae on dead leaf of Faidherbia albida, and Aureobasidium welwitschiae on dead leaves of Welwitschia mirabilis. Netherlands, Gaeumannomycella caricigena on dead culms of Carex elongata, Houtenomyces caricicola (incl. Houtenomyces gen. nov.) on culms of Carex disticha, Neodacampia ulmea (incl. Neodacampia gen. nov.) on branch of Ulmus laevis, Niesslia phragmiticola on dead standing culms of Phragmites australis, Pseudopyricularia caricicola on culms of Carex disticha, and Rhodoveronaea nieuwwulvenica on dead bamboo sticks. Norway, Arrhenia similis half-buried and moss-covered pieces of rotting wood in grass-grownpath. Pakistan, Mallocybe ahmadii on soil. Poland, Beskidomyces laricis (incl. Beskidomyces gen. nov.) from resin of Larix decidua ssp. polonica, Lapidomyces epipinicola from sooty mould community on Pinus nigra, and Leptographium granulatum from a gallery of Dendroctonus micans on Picea abies. Portugal, Geoglossum azoricum on mossy areas of laurel forest areas planted with Cryptomeria japonica, and Lunasporangiospora lusitanica from a biofilm covering a bio deteriorated limestone wall. Qatar, Alternaria halotolerans from hypersaline sea water, and Alternaria qatarensis from water sample collected from hypersaline lagoon. South Africa, Alfaria thamnochorti on culm of Thamnochortus fraternus, Knufia aloeicola on Aloe gariepensis, Muriseptatomyces restionacearum (incl.Muriseptatomyces gen. nov.) on culms of Restionaceae, Neocladosporium arctotis on nest of cases of bagworm moths(Lepidoptera, Psychidae) on Arctotis auriculata, Neodevriesia scadoxi on leaves of Scadoxus puniceus, Paraloratospora schoenoplecti on stems of Schoenoplectus lacustris, Tulasnella epidendrea from the roots of Epidendrum × obrienianum, and Xenoidriella cinnamomi (incl. Xenoidriella gen. nov.) on leaf of Cinnamomum camphora. South Korea, Lemonniera fraxinea on decaying leaves of Fraxinus sp. frompond. Spain, Atheniella lauri on the bark of fallen trees of Laurus nobilis, Halocryptovalsa endophytica from surface-sterilised, asymptomatic roots of Salicornia patula, Inocybe amygdaliolens on soil in mixed forest, Inocybe pityusarum on calcareous soil in mixed forest, Inocybe roseobulbipes on acidic soils, Neonectria borealis from roots of Vitis berlandieri × Vitis rupestris, Sympoventuria eucalyptorum on leaves of Eucalyptus sp., and Tuber conchae fromsoil. Sweden, Inocybe bidumensis on calcareous soil. Thailand, Cordyceps sandindaengensis on Lepidoptera pupa, buried in soil, Ophiocordyceps kuchinaraiensis on Coleoptera larva, buried in soil, and Samsoniella winandae on Lepidoptera pupa, buriedinsoil. Taiwan region (China), Neophaeosphaeria livistonae on dead leaf of Livistona rotundifolia. Türkiye, Melanogaster anatolicus on clay loamy soils. UK, Basingstokeomyces allii (incl. Basingstokeomyces gen. nov.) on leaves of Allium schoenoprasum. Ukraine, Xenosphaeropsis corni on recently dead stem of Cornus alba. USA, Nothotrichosporon aquaticum (incl. Nothotrichosporon gen. nov.) from water, and Periconia philadelphiana from swab of coil surface. Morphological and culture characteristics for these new taxa are supported by DNA barcodes.The work of P.W. Crous and colleagues benefitted from funding by the European Union’s Horizon 2020 research and innovation program (RISE) under the Marie Skłodowska-Curie grant agreement No. 101008129, project acronym ‘Mycobiomics’, and the Dutch NWO Roadmap grant agreement No. 2020/ENW/00901156, project ‘Netherlands Infrastructure for Ecosystem and Biodiversity Analysis – Authoritative and Rapid Identification System for Essential biodiversity information’(acronym NIEBAARISE). G. Gulden, B. Rian and I. Saar thank K. Bendiksen at the fungarium and G. Marthinsen at NorBol, both Natural History Museum, University of Oslo for valuable help with the collections, and the sequencing of our finds of A. similis from 2022. Sincere thanks to A. Voitk for assistance with the colour plate and review of the manuscript. I. Saar was supported by the Estonian Research Council (grant PRG1170). P. Rodriguez-Flakus and co-authors are greatly indebted to their colleagues and all staff of the Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de SanAndrés, La Paz, for their generous long-term cooperation. Their research was financially supported by the National Science Centre (NCN) in Poland (grants numbers 2018/02/X/NZ8/02362 and 2021/43/B/NZ8/02902). Y.P. Tan and colleagues thank M.K. Schutze (Department of Agriculture and Fisheries, Queensland, Australia) for determining the identity of the insect hosts for Aschersonia mackerrasiae. The Australian Biological Resources Study funded the project that led to the discovery of Aschersonia mackerrasiae. K.G.G. Ganga acknowledges support from the University Grants Commission (UGC), India, in the form of a UGC research fellowship (Ref No. 20/12/2015(ii) EU-V), and the authorities of the University of Calicut for providing facilities to conduct this study. S. Mahadevakumar acknowledges the Director, KSCSTE - Kerala Forest Research Institute and Head of Office, Botanical Survey of India,Andaman and Nicobar Regional Centre, Port Blair for the necessary support and M. Madappa, Department of Studies in Botany, University of Mysore for technical assistance. A.R. Podile thanks the Department of Science and Technology, Govt. of India for the JC Bose Fellowship (Grant No. JCB/2017/000053) & MoE and IOE-Directorate-UOH for project (Grant No.UOH-IOE-RC3-21-065). Financial support was provided to R. de L. Oliveira and K.D. Barbosa by the Coordenação deAperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) – Finance code 001, and to I.G. Baseia and M.P. Martín by the National Council for Scientific and Technological Development (CNPq) under CNPq-Universal 2016 (409960/2016-0) and CNPq-visiting researcher (407474/2013-7). E. Larsson acknowledges the Swedish Taxonomy Initiative, SLU Artdatabanken, Uppsala, Sweden. H.Y. Mun and J. Goh were supported by a grant from the Nakdonggang National Institute of Biological Resources (NNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NNIBR202301106). J. Trovão and colleagues were financed by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), and by Portuguese funds through FCT- Fundação para a Ciência e a Tecnologia in the framework of the project POCI-01-0145-FEDER-PTDC/EPH-PAT/3345/ 2014. Their research was carried out at the R & D Unit Centre for Functional Ecology – Science for People and the Planet (CFE), with reference UIDB/04004/2020, financed by FCT/MCTES through national funds (PIDDAC). João Trovão was supported by POCH - Programa Operacional Capital Humano (co-funding by the European Social Fund and national funding by MCTES), through a ‘FCT- Fundação para a Ciência e Tecnologia’ PhD research grant (SFRH/ BD/132523/2017). O. Kaygusuz and colleagues thank the Research Fund of the Isparta University ofApplied Sciences for their financial support under the project number 2021-ILK1-0155. They also thank N. Sánchez Biezma of the Department of Drawing and Scientific Photography at the Alcalá University for his help in the digital preparation of the photographs. The research of M. Spetik and co-authors was supported by project No. IGAZF/2021-SI1003. V. Darmostuk and colleagues acknowledge our colleagues and all staff of the Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, for their generous long-term cooperation. They would also like to thank the SERNAP (http://sernap.gob.bo), and all protected areas staff, for providing permits for scientific studies, as well as their assistance and logistical support during the field works. This research was financially supported by the National Science Centre (NCN) in Poland (grant number DEC-2013/11/D/NZ8/ 03274). M. Kaliyaperumal and co-authors thank the Centre of Advanced Studies in Botany, University of Madras for the laboratory facilities. M. Kaliyaperumal thanks the Extramural Research-SERB, DST (EMR/2016/003078), Government of India, for financial assistance. M. Kaliyaperumal and K. Kezo thanks RUSA 2.0 (Theme-1, Group-1/2021/49) for providing a grant. M. Shivannegowda and colleagues thank C.R. Santhosh, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru for technical support. They also thank K.R. Sridhar, Mangalore University, Karnataka, India and S.S.N. Maharachchikumbura, University of Electronic Science and Technology of China, Chengdu for their support and helping with technical inputs. The study of G.G. Barreto and co-authors was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES - Finance Code 001), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Proc. 131503/2019-7; Proc. 312984/2018-9); the authors also thank to Programa de Pós-Graduação em Botânica – PPGBOT. L.F.P. Gusmão thanks to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a research grant. T. Nkomo and colleagues thank the National Research Foundation of SouthAfrica for funding this study, with additional funding from the Forestry and Agricultural Biotechnology Institute and the University of Pretoria. G. Delgado is grateful to W. Colbert and S. Ward (Eurofins Built Environment) for continual encouragement and provision of laboratory facilities. J.G. Maciá-Vicente acknowledges support from the Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) of the state of Hesse within the framework of the Cluster for Integrative Fungal Research (IPF) of Goethe University Frankfurt. F. Esteve-Raventós and colleagues acknowledge P. Juste and J.C. Campos for the loan of some collections for study and N. Subervielle and L. Hugot (Conservatoire Botanique National de Corse, Office de l’Environnement de la Corse, Corti) for their assistance. They also acknowledge the Balearic Mycology Group (FCB) for their permanent help in the search for collections in the Balearic Islands, and Y. Turégano for obtaining some of the sequences presented here, and L. Parra for his suggestions and help on nomenclatural issues. S. Mongkolsamrit and colleagues were financially supported by the Platform Technology Management Section, National Centre for Genetic Engineering and Biotechnology (BIOTEC), Project Grant No. P19-50231. S. De la Peña-Lastra and colleagues thank the Atlantic Islands National Maritime-Terrestrial Park authorities and guards. A. Mateos and co-authors would like to thank Secretaria Regional doAmbiente eAlterações Climáticas Açores for the permission granted for the sampling (Licença nº 16/2021/ DRAAC). To the ECOTOX group for co-funding the trip. J. Mack & D.P. Overy were funded byAgriculture &Agri-Food Canada (Project ID#002272: Fungal and Bacterial Biosystematics-bridging taxonomy and “omics” technology in agricultural research and regulation) and are grateful for molecular sequencing support from the Molecular Technologies Laboratory (MTL) at the Ottawa Research & Development Centre of Agriculture & Agri-Food Canada. The study of P. Czachura was funded by the National Science Centre, Poland, under the project 2019/35/N/NZ9/04173. The study of M. Piątek and coauthors was funded by the National Science Centre, Poland, under the project 2017/27/B/NZ9/02902. O. Yarden and L. Granit were funded by the Israel Science Foundation (grant number 888/19). H. Taşkın and colleagues received support from the BulgarianAcademy of Sciences and the Scientific and Technological Research Council of Türkiye (Bilateral grant agreement between BAS and TÜBİTAK, project number 118Z640). The authors would also like to thank S. Şahin (İzmir, Türkiye) for conveying one of the localities of A. abscondita. Andrew Miller would like to thank the Roy J. Carver Biotechnology Center at the University of Illinois for Sanger sequencing. E.R. Osieck thanks Staatsbosbeheer for permission to collect fungi in Nieuw Wulven, in the Netherlands. P. van ‘t Hof and co-authors thank the Galapagos Genetic Barcode project supported by UK Research and Innovation, Global Challenges Research Fund, Newton Fund, University of Exeter, Galapagos Science Center, Universidad San Francisco de Quito, Galapagos Conservation Trust, and Biosecurity Agency of Galapagos (ABG).Peer reviewe

    Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites

    Get PDF

    Under the redwoods,

    No full text
    Signatures: <1⁴, 2-22⁸; plus 23²>First ed.Jimmy's big brother from California.--The youngest Miss Piper.--A widow of the Santa Ana Valley.--The mermaid of Lighthouse Point.--Under the eaves.--How Reuben Allen "saw life" in San Francisco.--Three vagabonds of Trinidad.--A vision of the fountain.--A romance of the line.--Bohemian days in San Francisco.Mode of access: Internet.Bancroft xF855.1.H327u copy 3: From the library of Robert B. Honeyman.Bancroft xF855.1.H327u copy 2: From the library of Robert B. Honeyman.BANC; xF855.1.H327u copy 3: Signatures vary: <1-21⁸, 22⁴>BANC; xF855.1.H327u copy 3: Bound in red cloth.BANC; xF855.1.H327u copy 2: Bound in brown cloth.BANC; xF855.1.H327u copy 1: Red cloth.BANC; xF855.1.H327u copy 1: Association: Bookplate of Charles Atwood Kofoid

    Elementi di archeologica : ad uso dell' Archiginnasio Romano /

    No full text
    Includes index.Includes bibliographical footnotes.Mode of access: Internet
    corecore