4 research outputs found

    UNBOUND

    Get PDF
    Featured here, are the extraordinary works of our graduating Fashion Design class. This accomplishment is truly a celebration of the tree years of passion, hard work, and dedication of our students. It\u27s our hope that the fashion industry will partake in the creative endeavors of the emerging designers from the Fashion Design program at Fanshawe College in London, Ontario.https://first.fanshawec.ca/famd_design_fashiondesign_unbound/1002/thumbnail.jp

    PESFOR-W: Improving the design and environmental effectiveness of woodlands for water Payments for Ecosystem Services

    Get PDF
    ABSTRACT: The EU Water Framework Directive aims to ensure restoration of Europe?s water bodies to ?good ecological status? by 2027. Many Member States will struggle to meet this target, with around half of EU river catchments currently reporting below standard water quality. Diffuse pollution from agriculture represents a major pressure, affecting over 90% of river basins. Accumulating evidence shows that recent improvements to agricultural practices are benefiting water quality but in many cases will be insufficient to achieve WFD objectives. There is growing support for land use change to help bridge the gap, with a particular focus on targeted tree planting to intercept and reduce the delivery of diffuse pollutants to water. This form of integrated catchment management offers multiple benefits to society but a significant cost to landowners and managers. New economic instruments, in combination with spatial targeting, need to be developed to ensure cost effective solutions - including tree planting for water benefits - are realised. Payments for Ecosystem Services (PES) are flexible, incentive-based mechanisms that could play an important role in promoting land use change to deliver water quality targets. The PESFOR-W COST Action will consolidate learning from existing woodlands for water PES schemes in Europe and help standardize approaches to evaluating the environmental effectiveness and cost-effectiveness of woodland measures. It will also create a European network through which PES schemes can be facilitated, extended and improved, for example by incorporating other ecosystem services linking with aims of the wider forestscarbon policy nexus

    Linkage and association of successful aging to the 6q25 region in large Amish kindreds

    No full text
    Successful aging (SA) is a multidimensional phenotype involving living to older age with high physical function, preserved cognition, and continued social engagement. Several domains underlying SA are heritable, and identifying health-promoting polymorphisms and their interactions with the environment could provide important information regarding the health of older adults. In the present study, we examined 263 cognitively intact Amish individuals age 80 and older (74 SA and 189 “normally aged”) all of whom are part of a single 13-generation pedigree. A genome-wide association study of 630,309 autosomal single nucleotide polymorphisms (SNPs) was performed and analyzed for linkage using multipoint analyses and for association using the modified quasi-likelihood score test. There was evidence for linkage on 6q25-27 near the fragile site FRA6E region with a dominant model maximum multipoint heterogeneity LOD score = 3.2. The 1-LOD-down support interval for this linkage contained one SNP for which there was regionally significant evidence of association (rs205990, p = 2.36 × 10(−5)). This marker survived interval-wide Bonferroni correction for multiple testing and was located between the genes QKI and PDE10A. Other areas of chromosome 6q25-q27 (including the FRA6E region) contained several SNPs associated with SA (minimum p = 2.89 × 10(−6)). These findings suggest potentially novel genes in the 6q25-q27 region linked and associated with SA in the Amish; however, these findings should be verified in an independent replication cohort. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11357-012-9447-1) contains supplementary material, which is available to authorized users

    A germline variant in the TP53 polyadenylation signal confers cancer susceptibility

    Get PDF
    Contains fulltext : 97569.pdf (publisher's version ) (Closed access)To identify new risk variants for cutaneous basal cell carcinoma, we performed a genome-wide association study of 16 million SNPs identified through whole-genome sequencing of 457 Icelanders. We imputed genotypes for 41,675 Illumina SNP chip-typed Icelanders and their relatives. In the discovery phase, the strongest signal came from rs78378222[C] (odds ratio (OR) = 2.36, P = 5.2 x 10(-17)), which has a frequency of 0.0192 in the Icelandic population. We then confirmed this association in non-Icelandic samples (OR = 1.75, P = 0.0060; overall OR = 2.16, P = 2.2 x 10(-20)). rs78378222 is in the 3' untranslated region of TP53 and changes the AATAAA polyadenylation signal to AATACA, resulting in impaired 3'-end processing of TP53 mRNA. Investigation of other tumor types identified associations of this SNP with prostate cancer (OR = 1.44, P = 2.4 x 10(-6)), glioma (OR = 2.35, P = 1.0 x 10(-5)) and colorectal adenoma (OR = 1.39, P = 1.6 x 10(-4)). However, we observed no effect for breast cancer, a common Li-Fraumeni syndrome tumor (OR = 1.06, P = 0.57, 95% confidence interval 0.88-1.27)
    corecore