180 research outputs found

    An empirical analysis of smart contracts: platforms, applications, and design patterns

    Full text link
    Smart contracts are computer programs that can be consistently executed by a network of mutually distrusting nodes, without the arbitration of a trusted authority. Because of their resilience to tampering, smart contracts are appealing in many scenarios, especially in those which require transfers of money to respect certain agreed rules (like in financial services and in games). Over the last few years many platforms for smart contracts have been proposed, and some of them have been actually implemented and used. We study how the notion of smart contract is interpreted in some of these platforms. Focussing on the two most widespread ones, Bitcoin and Ethereum, we quantify the usage of smart contracts in relation to their application domain. We also analyse the most common programming patterns in Ethereum, where the source code of smart contracts is available.Comment: WTSC 201

    The governance structure for data access in the DIRECT consortium: an innovative medicines initiative (IMI) project.

    Get PDF
    Biomedical research projects involving multiple partners from public and private sectors require coherent internal governance mechanisms to engender good working relationships. The DIRECT project is an example of such a venture, funded by the Innovative Medicines Initiative Joint Undertaking (IMI JU). This paper describes the data access policy that was developed within DIRECT to support data access and sharing, via the establishment of a 3-tiered Data Access Committee. The process was intended to allow quick access to data, whilst enabling strong oversight of how data were being accessed and by whom, and any subsequent analyses, to contribute to the overall objectives of the consortium.This article is freely available via Open Access

    Genetic insight into sick sinus syndrome

    Get PDF
    Aims. The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. Methods and results. We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1–1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10⁻²⁰), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). Conclusion. We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS

    Bioinformatics-Driven Identification and Examination of Candidate Genes for Non-Alcoholic Fatty Liver Disease

    Get PDF
    ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS

    Pharmacogenomics of GLP-1 receptor agonists: a genome-wide analysis of observational data and large randomised controlled trials

    Get PDF
    Background: In the treatment of type 2 diabetes, GLP-1 receptor agonists lower blood glucose concentrations, body weight, and have cardiovascular benefits. The efficacy and side effects of GLP-1 receptor agonists vary between people. Human pharmacogenomic studies of this inter-individual variation can provide both biological insight into drug action and provide biomarkers to inform clinical decision making. We therefore aimed to identify genetic variants associated with glycaemic response to GLP-1 receptor agonist treatment. Methods: In this genome-wide analysis we included adults (aged ≥18 years) with type 2 diabetes treated with GLP-1 receptor agonists with baseline HbA1c of 7% or more (53 mmol/mol) from four prospective observational cohorts (DIRECT, PRIBA, PROMASTER, and GoDARTS) and two randomised clinical trials (HARMONY phase 3 and AWARD). The primary endpoint was HbA1c reduction at 6 months after starting GLP-1 receptor agonists. We evaluated variants in GLP1R, then did a genome-wide association study and gene-based burden tests. Findings: 4571 adults were included in our analysis, of these, 3339 (73%) were White European, 449 (10%) Hispanic, 312 (7%) American Indian or Alaskan Native, and 471 (10%) were other, and around 2140 (47%) of the participants were women. Variation in HbA1c reduction with GLP-1 receptor agonists treatment was associated with rs6923761G→A (Gly168Ser) in the GLP1R (0·08% [95% CI 0·04–0·12] or 0·9 mmol/mol lower reduction in HbA1c per serine, p=6·0 × 10−5) and low frequency variants in ARRB1 (optimal sequence kernel association test p=6·7 × 10−8), largely driven by rs140226575G→A (Thr370Met; 0·25% [SE 0·06] or 2·7 mmol/mol [SE 0·7] greater HbA1c reduction per methionine, p=5·2 × 10−6). A similar effect size for the ARRB1 Thr370Met was seen in Hispanic and American Indian or Alaska Native populations who have a higher frequency of this variant (6–11%) than in White European populations. Combining these two genes identified 4% of the population who had a 30% greater reduction in HbA1c than the 9% of the population with the worse response. Interpretation: This genome-wide pharmacogenomic study of GLP-1 receptor agonists provides novel biological and clinical insights. Clinically, when genotype is routinely available at the point of prescribing, individuals with ARRB1 variants might benefit from earlier initiation of GLP-1 receptor agonists. Funding: Innovative Medicines Initiative and the Wellcome Trus

    A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis

    Get PDF
    Bell et al. report 46 new loci associated with biomarkers of iron homeostasis, including ferritin levels, iron binding capacity, and iron saturation, in the Icelandic, Danish and UK populations. The associated loci point to new iron-regulating proteins and important genetic differences between men and women
    corecore