294 research outputs found
Life Cycle of the Water Scorpion, Laccotrephes japonensis, in Japanese Rice Fields and a Pond
A Laccotrephes japonensis (Nepidae: Heteroptera) population was studied based upon mark and recapture censuses in order to elucidate the seasonal pattern of habitat utilization in a rice paddy system including an irrigation pond between April and October, in 2006 and 2007. The seasonal pattern of nymphs and adults did not differ markedly between the rice fields and the pond. Survival rates of L. japonensis of all stages did not differ between the rice fields and the pond in 2006, but were lower in 2007 in both habitats. In 2007, however, the survival rate of L. japonensis nymphs in the pond was higher than in the rice fields. In rice fields, 36.3% of the overwintering adults were recaptured the following year. On the other hand, the recapture rate after overwintering in the pond was only 6.4%. Migration from the pond to the paddies and vice versa was observed. In summary, the rice fields and the pond may reinforce each other as reproductive and overwintering sites of L. japonensis, especially during unfavorable years
Notes on Stein-Sahi representations and some problems of non harmonic analysis
We discuss one natural class of kernels on pseudo-Riemannian symmetric
spaces.Comment: 40p
Dynamic model of basic oxygen steelmaking process based on multi-zone reaction kinetics : model derivation and validation
A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the BOF operation. The three reaction zones, (i) jet impact zone (ii) slag-bulk metal zone (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process
Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs
The complex analytic methods have found a wide range of applications in the
study of multiplicity-free representations. This article discusses, in
particular, its applications to the question of restricting highest weight
modules with respect to reductive symmetric pairs. We present a number of
multiplicity-free branching theorems that include the multiplicity-free
property of some of known results such as the Clebsh--Gordan--Pieri formula for
tensor products, the Plancherel theorem for Hermitian symmetric spaces (also
for line bundle cases), the Hua--Kostant--Schmid -type formula, and the
canonical representations in the sense of Vershik--Gelfand--Graev. Our method
works in a uniform manner for both finite and infinite dimensional cases, for
both discrete and continuous spectra, and for both classical and exceptional
cases
Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant
Jet event rates in deep inelastic ep scattering at HERA are investigated
applying the modified JADE jet algorithm. The analysis uses data taken with the
H1 detector in 1994 and 1995. The data are corrected for detector and
hadronization effects and then compared with perturbative QCD predictions using
next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2)
is determined evaluating the jet event rates. Values of alpha_S(Q^2) are
extracted in four different bins of the negative squared momentum
transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the
renormalization group equation to these several alpha_S(Q^2) values results in
alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys.
J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
Observation of the electromagnetic doubly OZI-suppressed decay
Using a sample of billion events accumulated with the BESIII
detector at the BEPCII collider, we report the observation of the decay , which is the first evidence for a doubly
Okubo-Zweig-Iizuka suppressed electromagnetic decay. A clear structure
is observed in the mass spectrum around 1.02 GeV/, which can
be attributed to interference between and
decays. Due to this interference, two
possible solutions are found. The corresponding measured values of the
branching fraction of are and .Comment: 7 pages, 4 figures, published in Phys. Rev.
Dynamic model of basic oxygen steelmaking process based on multi-zone reaction kinetics : modelling of manganese removal
In the earlier work, a dynamic model for the BOF process based on the multi-zone reaction kinetics has been developed. In the preceding part, the mechanism of manganese transfer in three reactive zones of the converter has been analyzed. This study identifies that temperature at the slag-metal reaction interface plays a major role in the Mn reaction kinetics and thus a mathematical treatment to evaluate temperature at each reaction interface has been successfully employed in the rate calculation. The Mn removal rate obtained from different zones of the converter predicts that the first stage of the blow is dominated by the oxidation of Mn at the jet impact zone, albeit some additional Mn refining has been observed as a result of the oxidation of metal droplets in emulsion phase. The mathematical model predicts that the reversion of Mn from slag to metal primarily takes place at the metal droplet in the emulsion due to an excessive increase in slag-metal interface temperature during the middle stage of blowing. In the final stage of the blow, the competition between simultaneous reactions in jet impact and emulsion zone controls the direction of mass flow of manganese. Further, the model prediction shows that the Mn refining in the emulsion is a strong function of droplet diameter and the residence time. Smaller sized droplets approach equilibrium quickly and thus contribute to a significant Mn conversion between slag and metal compared to the larger sized ones. The overall model prediction for Mn in the hot metal has been found to be in good agreement with two sets of different size top blowing converter data reported in the literature
Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior
The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes - a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein - significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans
Expression in Antennae and Reproductive Organs Suggests a Dual Role of an Odorant-Binding Protein in Two Sibling Helicoverpa Species
Odorant-binding proteins (OBPs) mediate both perception and release of semiochemicals in insects. These proteins are the ideal targets for understanding the olfactory code of insects as well as for interfering with their communication system in order to control pest species. The two sibling Lepidopteran species Helicoverpa armigera and H. assulta are two major agricultural pests. As part of our aim to characterize the OBP repertoire of these two species, here we focus our attention on a member of this family, OBP10, particularly interesting for its expression pattern. The protein is specifically expressed in the antennae of both sexes, being absent from other sensory organs. However, it is highly abundant in seminal fluid, is transferred to females during mating and is eventually found on the surface of fertilised eggs. Among the several different volatile compounds present in reproductive organs, OBP10 binds 1-dodecene, a compound reported as an insect repellent. These results have been verified in both H. armigera and H. assulta with no apparent differences between the two species. The recombinant OBP10 binds, besides 1-dodecene, some linear alcohols and several aromatic compounds. The structural similarity of OBP10 with OBP1 of the mosquito Culex quinquefasciatus, a protein reported to bind an oviposition pheromone, and its affinity with 1-dodecene suggest that OBP10 could be a carrier for oviposition deterrents, favouring spreading of the eggs in these species where cannibalism is active among larvae
Prediction of binding hot spot residues by using structural and evolutionary parameters
In this work, we present a method for predicting hot spot residues by using a set of structural and evolutionary parameters. Unlike previous studies, we use a set of parameters which do not depend on the structure of the protein in complex, so that the predictor can also be used when the interface region is unknown. Despite the fact that no information concerning proteins in complex is used for prediction, the application of the method to a compiled dataset described in the literature achieved a performance of 60.4%, as measured by F-Measure, corresponding to a recall of 78.1% and a precision of 49.5%. This result is higher than those reported by previous studies using the same data set
- …