Abstract

The complex analytic methods have found a wide range of applications in the study of multiplicity-free representations. This article discusses, in particular, its applications to the question of restricting highest weight modules with respect to reductive symmetric pairs. We present a number of multiplicity-free branching theorems that include the multiplicity-free property of some of known results such as the Clebsh--Gordan--Pieri formula for tensor products, the Plancherel theorem for Hermitian symmetric spaces (also for line bundle cases), the Hua--Kostant--Schmid KK-type formula, and the canonical representations in the sense of Vershik--Gelfand--Graev. Our method works in a uniform manner for both finite and infinite dimensional cases, for both discrete and continuous spectra, and for both classical and exceptional cases

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020