11,526 research outputs found
Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure
Synthetic magnetism in cold atomic gases opened the doors to many exciting
novel physical systems and phenomena. Ubiquitous are the methods used for the
creation of synthetic magnetic fields. They include rapidly rotating
Bose-Einstein condensates employing the analogy between the Coriolis and the
Lorentz force, and laser-atom interactions employing the analogy between the
Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure -
being one of the most common forces induced by light - has not yet been used
for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz
force, based on the radiation pressure and the Doppler effect, by observing the
centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the
velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel
concept is straightforward to implement in a large volume, for a broad range of
velocities, and can be extended to different geometries.Comment: are welcom
Synthetic Lorentz force in classical atomic gases via Doppler effect and radiation pressure
We theoretically predict a novel type of synthetic Lorentz force for
classical (cold) atomic gases, which is based on the Doppler effect and
radiation pressure. A fairly uniform and strong force can be constructed for
gases in macroscopic volumes of several cubic millimeters and more. This opens
the possibility to mimic classical charged gases in magnetic fields, such as
those in a tokamak, in cold atom experiments.Comment: are welcom
Optimization of Short Coherent Control Pulses
The coherent control of small quantum system is considered. For a two-level
system coupled to an arbitrary bath we consider a pulse of finite duration. We
derive the leading and the next-leading order corrections to the evolution
operator due to the non-commutation of the pulse and the bath Hamiltonian. The
conditions are computed that make the leading corrections vanish. The pulse
shapes optimized in this way are given for and pulses.Comment: 9 pages, 6 figures; published versio
SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator
We developed a new sub-nanosecond time-resolved instrument to study the
dynamics of UV-visible luminescence under high stopping power heavy ion
irradiation. We applied our instrument, called SPORT, on a fast plastic
scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean
electronic stopping power of 2.6 MeV/\mu m. As a consequence of increasing
permanent radiation damages with increasing ion fluence, our investigations
reveal a degradation of scintillation intensity together with, thanks to the
time-resolved measurement, a decrease in the decay constant of the
scintillator. This combination indicates that luminescence degradation
processes by both dynamic and static quenching, the latter mechanism being
predominant. Under such high density excitation, the scintillation
deterioration of BC-400 is significantly enhanced compared to that observed in
previous investigations, mainly performed using light ions. The observed
non-linear behaviour implies that the dose at which luminescence starts
deteriorating is not independent on particles' stopping power, thus
illustrating that the radiation hardness of plastic scintillators can be
strongly weakened under high excitation density in heavy ion environments.Comment: 5 figures, accepted in Nucl. Instrum. Methods
Information loss in local dissipation environments
The sensitivity of entanglement to the thermal and squeezed reservoirs'
parameters is investigated regarding entanglement decay and what is called
sudden-death of entanglement, ESD, for a system of two qubit pairs. The
dynamics of information is investigated by means of the information disturbance
and exchange information. We show that for squeezed reservoir, we can keep both
of the entanglement and information survival for a long time. The sudden death
of information is seen in the case of thermal reservoir
A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa
AbstractThe mycobacterial ubiquitin-like protein Pup is coupled to proteins, thereby rendering them as substrates for proteasome-mediated degradation. The Pup-tagged proteins are recruited by the proteasomal ATPase Mpa (also called ARC). Using a combination of biochemical and NMR methods, we characterize the structural determinants of Pup and its interaction with Mpa, demonstrating that Pup adopts a range of extended conformations with a short helical stretch in its C-terminal portion. We show that the N-terminal coiled-coil domain of Mpa makes extensive contacts along the central region of Pup leaving its N-terminus unconstrained and available for other functional interactions.Structured summaryMINT-7262427: pup (uniprotkb:B6DAC1) binds (MI:0407) to mpa (uniprotkb:Q0G9Y7) by pull down (MI:0096) MINT-7262440: mpa (uniprotkb:Q0G9Y7) and pup (uniprotkb:B6DAC1) bind (MI:0407) by isothermal titration calorimetry (MI:0065
Schroedinger cat-like states by conditional measurements on a beam-splitter
A scheme for generating Schr\"{o}dinger cat-like states of a single-mode
optical field by means of conditional measurement is proposed. Feeding into a
beam splitter a squeezed vacuum and counting the photons in one of the output
channels, the conditional states in the other output channel exhibit a number
of properties that are very similar to those of superpositions of two coherent
states with opposite phases. We present analytical and numerical results for
the photon-number and quadrature-component distributions of the conditional
states and their Wigner and Husimi functions. Further, we discuss the effect of
realistic photocounting on the states.Comment: 6 figures(divided in subfigures) using a4.st
- …