76 research outputs found

    Letter to the Editor Concerning “The Ground State of Epitaxial Germanene on Ag(111)”

    Get PDF
    In a recent article by Zhang et al. (1) in ACS Nano, the authors write in the abstract of their article that there are many claims of the realization of germanene (the germanium analogue of graphene) but that no experimental evidence for the honeycomb structure of this two-dimensional material has been provided

    Evidence for a different dispersion of the topological edge state of germanene at armchair and zigzag edges

    Get PDF
    Utilizing a tunneling spectroscopy approach based on the energy-dependent inverse decay length, our research unveils distinct dispersion characteristics of germanene's topological edge states. We observe a pronounced variance in Fermi velocity, with armchair edges exhibiting a velocity higher than zigzag edges by about an order of magnitude. This difference highlights the influence of edge termination on the energy-momentum dispersion relation of one-dimensional topological edge states in two-dimensional topological insulators, aligning with the theoretical framework of a Kane-Mele topological insulator.</p

    Nanoscale Investigation of Defects and Oxidation of HfSe<sub>2</sub>

    Get PDF
    HfSe2 is a very good candidate for a transition metal dichalcogenide-based field-effect transistor owing to its moderate band gap of about 1 eV and its high-Îș dielectric native oxide. Unfortunately, the experimentally determined charge carrier mobility is about 3 orders of magnitude lower than the theoretically predicted value. This strong deviation calls for a detailed investigation of the physical and electronic properties of HfSe2. Here, we have studied the structure, density, and density of states of several types of defects that are abundant on the HfSe2 surface using scanning tunneling microscopy and spectroscopy. Compared to MoS2 and WSe2, HfSe2 exhibits similar type of defects, albeit with a substantially higher density of 9 × 1011 cm-2. The most abundant defect is a subsurface defect, which shows up as a dim feature in scanning tunneling microscopy images. These dim dark defects have a substantially larger band gap (1.25 eV) than the pristine surface (1 eV), suggesting a substitution of the Hf atom by another atom. The high density of defects on the HfSe2 surface leads to very low Schottky barrier heights. Conductive atomic force microscopy measurements reveal a very small dependence of the Schottky barrier height on the work function of the metals, suggesting a strong Fermi-level pinning. We attribute the observed Fermi-level pinning (pinning factor ∌0.1) to surface distortions and Se/Hf defects. In addition, we have also studied the HfSe2 surface after the exposure to air by scanning tunneling microscopy and conductive atomic force microscopy. Partly oxidized layers with band gaps of 2 eV and Schottky barrier heights of ∌0.6 eV were readily found on the surface. Our experiments reveal that HfSe2 is very air-sensitive, implying that capping or encapsulating of HfSe2, in order to protect it against oxidation, is a necessity for technological applications

    Impact of TCO Microstructure on the Electronic Properties of Carbazole-based Self-Assembled Monolayers

    Full text link
    Carbazole-based self-assembled monolayers (PACz-SAMs), anchored via their phosphonic acid group on a transparent conductive oxide (TCO) have demonstrated excellent performance as hole-selective layers in inverted perovskite solar cells. However, the influence of the TCO microstructure on the work function (WF) shift after SAM anchoring as well as the WF variations at the micro/nanoscale have not been extensively studied yet. Herein, we investigate the effect of the Sn-doped In2O3 (ITO) microstructure on the WF distribution upon 2PACz-SAMs and NiOx/2PACz-SAMs application. For this, ITO substrates with amorphous and polycrystalline (featuring either nanoscale or microscale-sized grains) microstructures are studied. A correlation between the ITO grain orientation and 2PACz-SAMs local potential distribution was found via Kelvin probe force microscopy and electron backscatter diffraction. These variations vanish for amorphous ITO or when adding an amorphous NiOx buffer layer, where a homogeneous surface potential distribution is mapped. Ultraviolet photoelectron spectroscopy confirmed the ITO WF increase after 2PACz-SAMs deposition. Considering the importance of polycrystalline TCOs as high mobility and broadband transparent electrodes, we provide insights to ensure uniform WF distribution upon application of hole transport SAMs, which is critical towards enhanced device performance.Comment: 18 pages, 5 figure

    Impact of the TCO Microstructure on the Electronic Properties of Carbazole-Based Self-Assembled Monolayers

    Get PDF
    Carbazole-based self-assembled monolayers (PACz-SAMs), anchored via their phosphonic acid group on a transparent conductive oxide (TCO), have demonstrated excellent performance as hole-selective layers in perovskite/silicon tandem solar cells. Yet, whereas different PACz-SAMs have been explored, the role of the TCO, and specifically its microstructure, on the hole transport properties of the TCO/PACz-SAMs stack has been largely overlooked. Here, we demonstrate that the TCO microstructure directly impacts the work function (WF) shift after SAM anchoring and is responsible for WF variations at the micro/nanoscale. Specifically, we studied Sn-doped In2O3 (ITO) substrates with amorphous and polycrystalline (featuring either nanoscale- or microscale-sized grains) microstructures before and after 2PACz-SAMs and NiOx/2PACz-SAMs anchoring. With this, we established a direct correlation between the ITO crystal grain orientation and 2PACz-SAMs local potential distribution, i.e., the WF. Importantly, these variations vanish for amorphous oxides (either in the form of amorphous ITO or when adding an amorphous NiOx buffer layer), where a homogeneous surface potential distribution is found. These findings highlight the importance of TCO microstructure tuning, to enable both high mobility and broadband transparent electrodes while ensuring uniform WF distribution upon application of hole transport SAMs, both critical for enhanced device performance.</p

    Moiré-modulated band gap and van Hove singularities in twisted bilayer germanene

    Get PDF
    Twisting bilayers of two-dimensional topological insulators has the potential to create unique quantum states of matter. Here, we successfully synthesized a twisted bilayer of germanene on Ge2Pt(101) with a 21.8° twist angle, corresponding to a commensurate (√7×√7) structure. Using scanning tunneling microscopy and spectroscopy, we unraveled the structural and electronic properties of this configuration, revealing a moirĂ©-modulated band gap and a well-defined edge state. This band gap opens at AB/BA stacked sites and closes at AA stacked sites, a phenomenon attributed to the electric field induced by the scanning tunneling microscopy tip. Our study further revealed two van Hove singularities at −0.8 eV and +1.04 eV, resulting in a Fermi velocity of (8 ± 1) × 105 m s−1. Our tight-binding results uncover a unique quantum state, where the topological properties could be regulated through an electric field, potentially triggering two topological phase transitions.</p

    Spatially resolved electronic structure of twisted graphene

    Get PDF
    We have used scanning tunneling microscopy and spectroscopy to resolve the spatial variation of the density of states of twisted graphene layers on top of a highly oriented pyrolytic graphite substrate. Owing to the twist a moire pattern develops with a periodicity that is substantially larger than the periodicity of a single layer graphene. The twisted graphene layer has electronic properties that are distinctly different from that of a single layer graphene due to the nonzero interlayer coupling. For small twist angles (about 1-3.5 degree) the integrated differential conductivity spectrum exhibits two well-defined Van Hove singularities. Spatial maps of the differential conductivity that are recorded at energies near the Fermi level exhibit a honeycomb structure that is comprised of two inequivalent hexagonal sub-lattices. For energies |E-E_F|>0.3 eV the hexagonal structure in the differential conductivity maps vanishes. We have performed tight-binding calculations of the twisted graphene system using the propagation method, in which a third graphene layer is added to mimic the substrate. This third layer lowers the symmetry and explains the development of the two hexagonal sub-lattices in the moire pattern. Our experimental results are in excellent agreement with the tight-binding calculations.Comment: To appear in Phys. Rev.

    Rio Verde Foothills area plan

    Get PDF
    abstract: It is important to note that the Rio Verde Foothills Area Plan is not a document that represents ultimate buildout as many municipal general plans typically do. Rather, it prepares for and accommodates growth over the next ten to fifteen years, but will be reexamined and updated periodically to reflect current conditions and changes. While not a complete solution, the Rio Verde Foothills Area Plan helps address the effects of growth and development by enhancing cooperation between government agencies, citizens, and other affected interests, and by considering regional implications.Issued as part of Maricopa County 2020 Eye to the Future, the Maricopa County General Plan
    • 

    corecore