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Evidence for a different dispersion of the topological edge state of germanene
at armchair and zigzag edges
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Utilizing a tunneling spectroscopy approach based on the energy-dependent inverse decay length, our research
unveils distinct dispersion characteristics of germanene’s topological edge states. We observe a pronounced
variance in Fermi velocity, with armchair edges exhibiting a velocity higher than zigzag edges by about an order
of magnitude. This difference highlights the influence of edge termination on the energy-momentum dispersion
relation of one-dimensional topological edge states in two-dimensional topological insulators, aligning with the
theoretical framework of a Kane-Mele topological insulator.
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I. INTRODUCTION

Two-dimensional topological insulators are materials that
exhibit the quantum spin Hall (QSH) effect [1–5]. They are
characterized by a gapped interior and topologically protected
helical edge states. The electronic transport in these edge
states is predicted to be dissipationless because backscatter-
ing is forbidden due to spin-momentum locking and time
reversal symmetry [6–9]. The latter offers great possibili-
ties for energy-efficient quantum devices, such as topological
field-effect transistors, interconnects, and topological (qu)bits
[10–14]. Topological edge states have been observed in
band-inverted semiconductors and two-dimensional mate-
rials [5,15–22], such as bismuthene [23] and germanene
[24]. To exploit the unique characteristics of topologically
protected edge states it is of utmost importance to study
the properties of these states, particularly in the vicinity
of the Fermi level. Among the most important quantities is
the Fermi velocity of the electrons. Unfortunately, the con-
ventional methods to measure the Fermi velocity of electrons,
i.e., angle-resolved photoemission [25] and quasiparticle in-
terference [26], cannot be applied to topologically protected
edge states. Angle-resolved photoemission is not applicable
owing to its macroscopic averaging, whereas the absence of
backscattering in topologically protected edge states disquali-
fies quasiparticle interference.

Here we propose a method to measure the energy-
momentum dispersion of topological edge states. The method
relies on the energy dependence of the inverse decay length
in a scanning tunneling microscopy tunnel barrier and is only
applicable when there is only one energy band in the energy
window of interest. Our material of choice is germanene
[27–33]; germanene is the germanium analog to graphene. We
recently demonstrated that germanene is a two-dimensional
topological insulator that hosts a topological edge state [24].
In this study, we will determine the Fermi velocity of this
topological edge state for two different edge terminations—
the zigzag and armchair edge.

II. EXPERIMENTAL METHODS

The scanning tunneling microscopy and spectroscopy
measurements are performed with an ultrahigh vacuum low-
temperature Omicron scanning tunneling microscope. The
background pressure in the ultrahigh vacuum system is lower
than 3 × 10−11 mbar. Germanene layers are produced by
depositing a few monolayers of Pt on an atomically clean
Ge(110) substrate. After Pt deposition, the Ge(110) substrate
is annealed at a temperature of about 1100 K for several
minutes. At this temperature µm-sized eutectic Ge0.78Pt0.22

droplets form on the Ge(110) substrate. Upon cooling down
the eutectic phase undergoes spinodal decomposition into a
pure Ge phase and a Ge2Pt alloy [27,34–37]. As discussed
extensively in Refs. [24,27] the Ge2Pt clusters are decorated
with several germanene layers. The germanene layers exhibit
a buckled honeycomb structure, where one of the hexagonal
sublattices is displaced in a direction normal to the germanene
sheet with respect to the other hexagonal sublattice. The first
germanene layer, often referred to as the buffer layer, couples
to the underlying Ge2Pt(101) substrate and does not exhibit
the properties of a two-dimensional topological insulator. The
other germanene layers are two-dimensional topological in-
sulators that host a topologically protected helical edge state
[24]. The differential conductivity, dI

dV , spectra are measured
at 77 K using a lock-in amplifier. The frequency of the lock-in
amplifier was set to 1.1–1.2 kHz and the modulation voltage
was 20 mV.

III. RESULTS AND DISCUSSION

Figure 1(a) shows a scanning tunneling microscopy image
of few layer germanene on Ge2Pt(101). A germanene buffer
layer is present in the lower right of the image, whereas
one-layer (1L) and two-layer (2L) germanene on the buffer
layer are found at the lower left and upper left of the image,
respectively. Figure 1(b) shows a simple schematic cartoon
of the germanene/buffer layer/Ge2Pt system. A scan taken
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FIG. 1. (a) Scanning tunneling microscopy image of germanene
on Ge2Pt. Buffer layer, 1L (one germanene layer on a buffer
layer/Ge2Pt) and 2L (two germanene layers on a buffer layer/Ge2Pt)
regions are shown. (b) Schematic diagram of the system. (c) Line
scan shown by the red line in panel (a) taken across a single layer
high step edge. (d) dI/dV versus V for bulk (black curve), armchair
edge (blue), and zigzag edge (red). Set-point sample bias −0.3 V
and set-point tunnel current 0.3 nA. (e) Map of the differential
conductivity (dI/dV) at a sample bias (V) of 100 mV.

across the red line in Fig. 1(a) is displayed in Fig. 1(c). The
height of the step edge is 0.28 nm, which corresponds to
the height of a single germanene layer [24,27]. Figure 1(d)
displays the differential conductivity versus sample bias of the
interior of germanene (black curve), an armchair terminated
edge (blue curve), and a zigzag terminated edge (red curve).
In the interior of germanene a band gap with a width of about
100–150 meV is observed. The armchair and zigzag edges
have a nonzero density of states filling the bulk band gap
region, hinting at the presence of a metallic edge state. The
density of states of the edges in the middle of the band gap
is, however, substantially higher for the zigzag edge than the
armchair edge. We will discuss this salient difference in more
detail below. Figure 1(e) shows a differential conductivity
(dI/dV) map of the scanning tunneling microscopy image
displayed in Fig. 1(a). The (dI/dV) map is taken near the
maximum of the dI/dV peak at 100 mV; see Fig. 1(d).

An atomic resolution scanning tunneling microscopy im-
age of the germanene edge is shown in Fig. 2(a). Given
the challenge of discerning atomic details at the edge, we
have fast Fourier transform (FFT) filtered the image shown
in Fig. 2(a); see Fig. 2(b). The edge at positions 1–8 has
a zigzag termination, whereas positions 9–15 correspond to
an armchair edge termination. The differential conductivity
as a function of sample bias at locations 1–15 and the in-
terior of the material (bulk) are displayed in Fig. 2(c). It is
immediately clear that the zigzag terminated edge exhibits a
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FIG. 2. (a) Scanning tunneling image of germanene showing an
edge. (b) Filtered version of panel (a) showing zigzag and armchair
terminated parts of the edge. The edge positions are labeled from
1 to 15. (c) dI/dV taken at different locations of the edge labeled
from 1 to 15; see panel (b). For clarity the curves 1–15 are shifted in
the y direction. The black curve, curve 4, and curve 12 correspond
to the black curve, the red curve, and the blue curve shown in
Fig. 1(d), respectively. Set-point sample bias −0.3 V and set-point
tunnel current 0.3 nA. A figure where all dI/dV curves, shown in
panel (c), are plotted without offset can be found in the Supplemental
Material (Fig. S3).

strong and well-defined peak, which is located in the middle
of the bulk band gap, whereas the density of states of the
armchair terminated edge positions is much lower. It should
be noted that the strength of the edge state at the zigzag edge
decreases near the kink sites, located at positions 1 and 8,
respectively. In addition, at location 8 the peak of the edge
state exhibits a shape that is somewhere in between a zigzag
and armchair state. These observations can be explained by
the averaging effect in scanning tunneling microscopy and
spectroscopy, which is caused by the finite radius of curvature
of the scanning tunneling microscopy tip. For completion, we
provide a dI(V)/dV curve recorded at a straight zigzag edge in
Fig. S1 of the Supplemental Material [38].

To explain our scanning tunneling spectroscopy observa-
tions we will first briefly elaborate on the density of states
of a topologically protected edge state. The topologically
protected helical edge state of germanene is one-dimensional
and the dispersion relation is assumed to be linear (E − ED =
±h̄vF|k|) (see the Supplemental Material [38]). The helical
edge state is located in the topological gap of germanene.
Please note that the gap at the � point of germanene is larger
than the topological gap at the K and K’ points [24]. Under the
aforementioned assumptions, the density of states in energy
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FIG. 3. Reciprocal lattice of germanene (top panels) and elec-
tronic band structure of (a) a zigzag and (b) an armchair edge (bottom
panels).

space is given by

D(E ) = 1

π h̄vF
, (1)

where vF is the Fermi velocity, E is the energy of the elec-
tron, ED is the Dirac point, and k is the momentum of the
electron. The spin degree of freedom is taken into account in
Eq. (1). The spin of the electrons in the topologically protected
edge state is locked to the momentum. We will consider here
only the high symmetry zigzag and armchair orientations.
The Fermi velocity of the topologically protected helical edge
state is not constant, but edge-termination dependent. The
dependence of the Fermi velocity on the edge termination
can best be understood by considering the projection of the
two-dimensional surface reciprocal unit cell in the direction
of the edge; see Fig. 3(a). In the case of a zigzag edge, the
Fermi velocity is given by [1]

vF,zz = �SO

h̄ 2π
3a

= 3�SOa

h
, (2)

where �SO is the spin-orbit gap and a is the lattice constant
of germanene. For a projection in the armchair direction, dif-
ferent from the zigzag direction, the K and K ′ points collapse
onto the � point resulting in a Fermi velocity that becomes
equal to the Fermi velocity in the interior of the material [see
Fig. 3(b)],

vF,AC = vF,bulk. (3)

To obtain an idea of the values of the zigzag and armchair
Fermi velocities we use the experimentally and theoretically
available data of germanene (�SO = 24–100 meV [24,39],
a = 0.42 nm [27], and vF,bulk = 9 × 105 m/s [40,41]). We
estimate the Fermi velocity of a zigzag edge to be of the order
of 104 m/s, whereas the Fermi velocity of an armchair edge
is estimated to be equal to the bulk Fermi velocity. Based on
this simple analysis it is immediately clear that the density of

states, which scales as v−1
F , of a zigzag edge is much higher

than the density of states of an armchair edge.
Scanning tunneling spectroscopy is often used to measure

the density of states. For small sample biases, the differential
conductivity (dI/dV) is approximately proportional to the den-
sity of states [42,43]. As we will show below, a more detailed
analysis reveals that in the case of a single dispersing state,
much more information can be extracted from dI/dV spectra.
In our case, the exact shape of the peak in the differential
conductivity near the Dirac point allows us to obtain a good
estimate for the Fermi velocity of the topologically protected
edge state.

We will first derive an expression for dI/dV in our specific
case. The tunnel current is given by

I (z,V ) =
∫ E=eV

0
Dt (E − eV )D(E )e−2κ (E )zdE

≈ Dt (0)D(eV )e−2κ (eV )zeV, (4)

where z is the tip-substrate distance, κ is the inverse decay
length, and Dt (E ) and Ds(E ) are the density of states of the
tip and the edge state, respectively. The density of states of
the edge state is given by Eq. (1) and the density of states of
the metallic scanning tunneling microscopy tip is assumed to
be constant (see the Supplemental Material [38]). The inverse
decay length is given by [42,43]

κ (E ) =
√

2m

h̄

√
φ + eV

2
− E + h̄2k2

‖
2m

, (5)

where φ = (φs + φt )/2 is the average work function of tip and
substrate and k‖ is the parallel momentum of the electronic
state of the substrate from or to which tunneling occurs. The
largest contribution to the tunnel current usually comes from
the electronic states with zero parallel momentum, i.e., the
electronic states at the � point. If, however, no electronic
states are available at the � point, the tunnel current will come
from electronic states with a nonzero parallel momentum that
are closest to the � point [42,43]. The inverse decay length
κ (V ) can be measured via dI (V )/dV or dI (z)/dz scanning
tunneling spectroscopy [40,42–44]. The inverse dispersion
relation, i.e., k‖(E ), can be obtained from Eq. (5) provided that
there is only one energy band (or two bands if the spin degen-
eracy is taken into account) in the energy window of interest.
In our specific case the parallel momentum is one-dimensional
and therefore the dispersion relation E (k‖) can immedi-
ately be obtained by inverting k‖(E ) (see the Supplemental
Material [38]).

We insert Eq. (1) into Eq. (4) and take the derivative of the
current, I(z,V), to V ,

dI (z,V )

dV
≈ C

π h̄vF
e−2κ (eV )z, (6)

where C is a constant. The inverse decay length is given by

κ (eV ) =
√

2m

h̄

√
φ − e|V |

2
+ h̄2k2

‖
2m

= κ0

√
1 − e|V |

2φ
+ (eV − eVD)2

2mv2
Fφ

, (7)
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FIG. 4. Differential conductivity of a zigzag and armchair edge
versus sample bias (red and blue points). A fit using Eq. (6) with
vF = 2.3 × 104 m/s for the zigzag edge and vF = 5 × 105 m/s for
the armchair edge. Thermal and instrumental broadening are in-
cluded in the fit (see the Supplemental Material [38]).

where κ0 =
√

2mφ

h̄ . Please note that (i) the largest contribution
to the tunnel current comes from electrons that encounter
the lowest tunnel barrier, i.e., the electrons with an energy
E = eV, and (ii) the application of a bias voltage V lowers the
effective barrier height by −e|V |/2 (here we take into account
that V can be positive as well as negative).

Owing to their low formation energies, zigzag and arm-
chair edges are the most abundant edge terminations of a
honeycomb lattice. The formation energy can be obtained by
counting the number of broken bonds per unit length a. This
simple broken bond counting method reveals that the forma-
tion energy of an armchair edge is a factor 2√

3
higher than the

formation energy of a zigzag edge and therefore the zigzag
edge termination is the most abundant edge termination. Any
germanene edge is basically composed of zigzag and armchair
terminated segments.

In Fig. 4 we show the differential conductivity versus sam-
ple bias curves recorded at a zigzag and armchair edge. The
differential conductivity is recorded at 77 K with a lock-in
technique using a modulation voltage of 20 mV, which results
in a broadening of the peak. In the Supplemental Material [38]

we provide more information on the thermal and instrumen-
tal broadening functions [45–48]. Equation (6) is convoluted
with the thermal and instrumental broadening functions and
subsequently fitted to the measured dI (V )

dV curves; see Fig. 4.
The fitting results in Fermi velocity of (2.3 ± 0.2) × 104 m/s
for the zigzag edge.

The density of states of an armchair edge is too low for
a proper fitting procedure. After subtracting the same back-
ground for the zigzag and armchair edges, we find that the
density of states of an armchair edge at the Dirac point is
a factor of ∼20 lower than the density of states of a zigzag
edge at the Dirac point. The density of states is proportional
to v−1

F and therefore the Fermi velocity of an armchair edge
is in the range (5 ± 2) × 105 m/s, which is slightly lower that
the experimentally available data for the bulk Fermi velocity
of germanene [40,41].

Finally, in the Supplemental Material [38] we show that
the dispersion relation of the zigzag edge can be extracted
from the peak shape of the edge state. As assumed earlier, the
dispersion relation of the zigzag terminated topological edge
state of germanene is indeed quite linear in a large portion
of the topological gap, but at the band edges the dispersion
relation flattens out a bit.

IV. CONCLUSIONS

In conclusion, we have scrutinized the local density of
states and dispersion of the zigzag and armchair terminated
topological edge state of germanene. We found that the
Fermi velocity depends on the termination of the edge. The
Fermi velocity is (2.3 ± 0.2) × 104 m/s at a zigzag edge
and (5 ± 2) × 105 m/s at an armchair edge. Using the Fermi
velocity of a zigzag edge, we extract a topological gap of
75 ± 10 meV, which is in good agreement with available
experimental data.
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