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We have used scanning tunneling microscopy and spectroscopy to resolve the spatial variation 

of the density of states of twisted graphene layers on top of a highly oriented pyrolytic graphite 

substrate. Owing to the twist a moiré pattern develops with a periodicity that is substantially 

larger than the periodicity of a single layer graphene. The twisted graphene layer has electronic 

properties that are distinctly different from that of a single layer graphene due to the nonzero 

interlayer coupling. For small twist angles (1o-3.5o) the integrated differential conductivity 

spectrum exhibits two well-defined Van Hove singularities. Spatial maps of the differential 

conductivity that are recorded at energies near the Fermi level exhibit a honeycomb structure 

that is comprised of two inequivalent hexagonal sub-lattices. For energies  FEE 0.3 eV the 

hexagonal structure in the differential conductivity maps vanishes. We have performed tight-

binding calculations of the twisted graphene system using the propagation method, in which a 

third graphene layer is added to mimic the substrate. This third layer lowers the symmetry and 

explains the development of the two hexagonal sub-lattices in the moiré pattern. Our 

experimental results are in excellent agreement with the tight-binding calculations. 
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Introduction 

The discovery of graphene in 2004 by Novoselov and Geim [1,2] has resulted into a long 

list of exciting and beautiful discoveries, as well as a new research field that deals with two-

dimensional materials [3-10]. Graphene is a semimetal, i.e. the material is gapless, but the density 

of states vanishes at the Fermi level [3]. The electronic band structure of a single graphene layer 

near the Fermi level is characterized by linearly dispersing energy bands that form Dirac cones at 

the K and K’ points of the Brillouin zone [3]. The apex of these cones is located at the Fermi level. 

When two layers of graphene are stacked on top of each other the electronic structure alters 

substantially. The low energy electronic band structure of bilayer graphene depends on how the 

two graphene layers are stacked [5]. The most common stacking is the so-called AB or Bernal 

stacking. The atoms of one of the hexagonal sub-lattices of the top layer (A1) are located on-top 

of the atoms of one of the sub-lattices of the bottom layer (B2). The other atoms (B1 and A2) do 

not lie directly below or above an atom of the other layer. Highly oriented pyrolytic graphite is 

often stacked in the Bernal configuration. A small twist angle of the top graphene layer with 

respect to the second graphene layer results into a so-called moiré pattern. The periodicity of 

this moiré pattern depends on the exact value of the twist angle. The electronic structure of this 

moiré pattern is characterized by a set of two Dirac cones that are located close to each other in 

reciprocal space. The crossing of these two Dirac cones results into two Van Hove singularities. 

In 2010 Li et al. [11] used scanning tunneling microscopy and spectroscopy to analyze 

these Van Hove singularities in twisted graphene layers. For small twist angles these authors 

observed two well-defined Van Hove singularities, one located just above the Fermi level and the 

other one located just below the Fermi level. The experimentally determined energy separation 

between these two Van Hove singularities nicely agrees with tight-binding calculations, provided 

that reasonable assumptions for the hopping integrals are made [11]. In addition, the authors 

pointed out that the two Van Hove singularities can become asymmetric (in position with respect 

to the Fermi level and amplitude) due to the presence of an interlayer bias. This interlayer bias is 

caused by the potential that is applied across the scanning tunneling microscopy junction. In the 

scanning tunneling microscopy data by Yin et al. [12] a similar asymmetry and shift was found 

and discussed. Yan et al. [13] studied the angle-dependent van Hove singularities and found, in 

contrast to predictions by band structure calculations, that the Fermi velocity is very comparable 

to the Fermi velocity of monolayer graphene. In a follow-up study Yan et al. [14] showed the 

breakdown of van Hove singularities beyond a twist angle of about 3.5o, indicating that the 

continuum models are no longer applicable at these relatively large twist angles. Yin et al. [15] 

showed that there is a magic twist angle of 1.11o at which the two van Hove singularities merge 

together and form a well-defined peak at the charge neutrality point. In addition to this strong 

peak at the charge neutrality point these authors also found a set of regularly spaced peaks. 

These regularly spaced peaks are confined electronic states in the twisted bilayer graphene. The 

energy spacing of 70 meV (=vF/D) agrees well with the periodicity of the moiré pattern. In another 

study Yin et al. [12] demonstrated that tilt grain boundaries can severely affect the structural and 

electronic properties of graphene multilayers. They also pointed out that tilt grain boundaries in 
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trilayer graphene can result in the coexistence of massless Dirac fermions and massive chiral 

fermions.  Wong et al. [16] performed local spectroscopy on gate-tunable twisted bilayer 

graphene. The twisted graphene bilayer was positioned on a hexagonal boron nitride substrate. 

Wong et al. [16] found, besides the coexistence of moiré patterns and moiré super-superlattices,  

also a very rich an interesting electronic structure. Despite the fact that the electronic structure 

of twisted bilayer graphene has been extensively studied [5,11-24], the spatial variation of 

electronic structure within the unit cell of the moiré pattern did not receive a lot of attention yet. 

 Here we have studied the spatial variation of the electronic structure of twisted graphene 

on highly oriented pyrolytic graphite substrates. In agreement with previous studies we found 

the development of two Van Hove singularities in the density of states. Spatial maps of the 

differential conductivity of the moiré pattern near the Fermi level reveal a honeycomb structure 

that is comprised of two inequivalent interpenetrating hexagonal sub-lattices. At large energies, 

i.e. , the difference in the density of states of the two hexagonal sub-lattices 

fades away. Here we show that the inequivalence of these two sub-lattices can be understood if 

one takes into account a lowering of the symmetry due to the presence of the substrate. We will 

model this by introducing a third graphene layer. The fact that the spatial variation of the 

differential conductivity fades away at high energies hints to an electronical instability. 

 

 

Experimental 

The experiments are performed with an ultra-high vacuum scanning tunneling 

microscope (Omicron). The base pressure of the ultra-high vacuum system is 1x10-11 mbar. 

Before insertion of the ZYA quality highly oriented pyrolytic graphite (HOPG) substrates into the 

load lock of the ultra-high vacuum system we have removed several graphene layers via 

mechanical exfoliation using the Scotch-tape method. In order to remove any residual water from 

the highly oriented pyrolytic graphite surfaces we have baked the load-lock system for 24 hours 

at a temperature of 120 oC. After cooling down, the samples are transferred to the main chamber 

and subsequently inserted into the scanning tunneling microscope for imaging . 

The scanning tunneling microscopy images are recorded in the constant current mode. 

Scanning tunneling spectroscopy spectra are recorded in two ways. In the first method we record 

current-voltage (IV) curves at many locations of the surface with the feedback loop of the 

scanning tunneling microscope disabled. The dI/dV spectra are obtained by numerical 

differentiation of the IV traces. In the second method a small sinusoidal voltage with a small 

amplitude of a few mV and a frequency of 1.9 kHz is added to the bias voltage. A lock-in amplifier 

is used to record the dI/dV signal. 

 

eVEE F 3.0
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Theoretical 

 

The theoretical calculations have been performed within the framework of the Slater-

Koster tight-binding model, in which we took into account the intralayer and interlayer hoppings 

between the pz orbitals. The nearest intralayer hoppings in all layers are fixed as t = 3 eV, and the 

interlayer hopping between two sites in different layers is given by,  

 

𝑡⊥ = cos2 𝛼  𝑉𝜎 + sin2 𝛼 𝑉𝜋,         (1) 

 

where the orbital overlap is modeled as function of the angle α between the line connecting the 

two sites and the normal of the graphene plane, while Vσ and Vπ are Slater-Koster integrals 

depending on the distance between the two sites. Both Vσ and Vπ decay rapidly when the distance 

between the two sites is larger than the lattice parameter a0 = 2.46 Å, and the contribution of 𝑉𝜋 

is negligible in the interlayer hoppings in multilayer graphene [23,24]. Here we use 0.24 eV as the 

maximum value of  𝑉𝜎 (for two sites with A-A stacking, the same value as used in Ref. [11]), and 

consider the screening effects following the environment-dependent tight-binding model 

introduced in Eq. (1) of Ref. [24]. The values of seven parameters fitted for the screening in 

multilayer graphene are taken from Ref. [24] as α1 = 6.175, α2 = 0.762, α3 = 0.179, α4 =1.411, β1 

=6.811, β2 = 0.01, β3 = 19.176.  All the neighboring pairs within a maximum in-plane distance of 2 

Å are included in the Hamiltonian.  

The electronic properties such as the density of states and quasi-eigenstates, which have 

the real-space profiles comparable to the experimental STM results, are calculated by using the 

tight-binding propagation method (TBPM) [25,26]. TBPM has the advantages that the physical 

properties are extracted directly from the time-evolution of the wave function, without any 

diagonalization of the Hamiltonian matrix. 

 

Results and discussion 

 

The electronic structure of twisted bilayer graphene, where the top layer is twisted by an 

angle   with respect to the bottom layer, depends on the exact value of . Commensurably 

twisted bilayer graphene can result in two different moiré lattice types [27]. The first type has a 

simple two-dimensional hexagonal superlattice, which is similar to the AB-stacked (Bernal) lattice. 

The other type has a two-dimensional honeycomb superlattice comprising two equivalent 
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hexagonal superlattices, and is similar to the AA-type stacked lattice. The honeycomb cases can 

be generated by twisting the two layers relative to one another over special angles  obtained 

from the relation [27,28], 

 

 
 22

2

2

222
cos

mnmn

mnmn




 ,        (2) 

 

in which the integers n and m have no common divisors, and n-m is not an integer multiple of 3 

[11]. The superlattice vectors are then given by 211 manaA  respectively 

212 )( amnmaA   with a supercell size factor 22 mnmnN  larger then in graphene 

[29,30]. The simple hexagonal lattice type can be obtained from the same relations by twisting 

over the special angles   . As an example we show in Figure 1 a scanning tunneling 

microscopy image of a 2.3o twisted graphene layer on a highly oriented pyrolytic graphite surface 

recorded at 77 K. The periodicity of the moiré pattern is 6.2 nm (  2sin20 a , where =0.246 

nm is the lattice constant of graphene [29,30]).  

The twist of the top graphene layer leads to a shift of the Dirac points in momentum space 

[5,11]. The shift in momentum space with respect to the K point of a single layer graphene, , 

is given by, 

 

  2sin KK           (3) 

 

In Figure 2(c) a schematic diagram of the energy bands of twisted bilayer graphene near the K 

point is shown. The crossing of the Dirac cones leads to a ‘flat’ region in the energy dispersion 

relation and thus to a divergence in the density of states, also referred to as a Van Hove 

singularity [31]. A prerequisite for the formation of Van Hove singularities in bilayer graphene is 

the presence of a non-zero interlayer coupling. For a vanishing interlayer coupling the electronic 

band structure of bilayer graphene reduces to that of the combination of the two independent 

graphene layers. 

In the inset of Figure 2(a) a scanning tunneling microscopy image of a twisted graphene 

layer is shown. The image is recorded at room temperature and the moiré pattern has  a 

periodicity of 7.0 nm, corresponding to a twist angle of 2.0o. The differential conductivity, dI/dV, 

which is proportional to the density of states for small biases, is depicted in Figure 2(a). The dI/dV 

spectra are obtained by numerical differentiating 3600 I(V) curves recorded at a 60x60 grid of the 

surface displayed in the inset of Figure 2(a). Two well-defined peaks are found at energies of -

0a

K
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110 meV and 15 meV with respect to the Fermi level, respectively. These two peaks are Van Hove 

singularities. At the high regions of the moiré pattern the peaks have a higher intensity as 

compared to the lower regions of the moiré pattern. The energy separation, relative strength 

and asymmetry are in good agreement with Ref. [11]. The dI/dV spectra in Figure 2(a) are 

recorded at room temperature and therefore these peaks are much broader than the peaks that 

are reported in Ref. [11], which are taken at 4 K. Spatial maps of the dI/dV recorded at various 

energies are shown in the two middle panels of Figure 3.  In order to understand the experimental 

observations shown in Figure 2, we have performed theoretical calculations of the density of 

states by using the Slater-Koster tight-binding model for rotated bilayer and trilayer graphene, 

i.e., a rotated graphene layer on top of a single-layer or bilayer graphene, respectively. The 

numerical results of the integrated density of states are plotted in Figure 2(b). It is clear that 

although the two Van Hove singularities are always present when there is a rotated graphene 

layer, one has to take into account the third layer in order to reproduce the significant electron-

hole asymmetry and the finite density of states in the vicinity of the Fermi level. The electron-

hole asymmetry is enhanced if the interlayer hoppings between the top and the third layer are 

also included. Furthermore, by turning on the direct interactions between the top and the third 

layer, the whole energy spectrum is shifted to the hole direction, similar to the experimental 

observations. Here we want to emphasize that for a heterostructure consisting of a rotated 

graphene layer on top of graphite, it is not sufficient to only consider a rotated bilayer graphene 

in the theoretical studies. The influence of the third layer, either indirectly via the hoppings to 

the middle layer, or directly via the interactions to the top layer, is not negligible. It is therefore 

necessary to consider at least three layers in the calculations of the electronic structure and 

physical properties.  

In Figure 4(a) high resolution spatial map of the differential conductivity of the strongest 

Van Hove singularity, which is located at -110 meV, is shown. This spatial map is recorded with a 

lock-in amplifier (modulation voltage 20 mV and frequency 1.9 kHz). The spatial dI/dV map 

exhibits atomic resolution. Even the periodicity of the top graphene layer with a lattice constant 

of 0.246 nm is visible. For the sake of clarity we have inverted the color scale in Figure 4(a), so 

dark regions refer to a high dI/dV signal, whereas bright spots refer to a low dI/dV signal. The 

honeycomb structure consists of two interpenetrating hexagonal sub-lattices. One hexagonal 

sub-lattice displays a substantially higher dI/dV signal than the other hexagonal sub-lattice. The 

occurrence of these two hexagonal sub-lattices can be understood if one takes into account a 

third graphene layer that breaks the symmetry of a twisted bilayer graphene. The dominant 

stacking arrangement of HOPG is the Bernal (AB) stacking. Consequently, half of the carbon 

atoms of the second graphene layer are located on top of a carbon atom of the bottom layer, 

whereas the other half of the second layer carbon atoms do not have a carbon atom underneath 

them. In Figure 4(b) the schematic diagram of trilayer graphene is depicted: the two bottom 

graphene layers are AB stacked, whereas the top graphene layer is twisted by 2.0o with respect 

to the second graphene layer. The honeycomb lattice of the moiré pattern in Figure 4(b) is 
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composed of two interpenetrating hexagonal sub-lattices. The highest dI/dV signal is observed if 

the atoms in the second layer have atoms directly underneath them. 

In the two middle panels of Figure 3 spatial maps of the differential conductivity are 

shown at various energies. The moiré pattern is present in the differential conductivity maps that 

are recorded near the Fermi level, but the structure fades away at larger energies. Also this 

observation is consistent with Ref. [11], albeit the sample bias range where we observe the moiré 

pattern in the dI/dV signal is substantially larger. In order to understand this strong energy 

dependence of the differential conductivity maps we have performed tight-binding calculations 

of a quasi-eigenstate, a superposition state of all degenerate eigenstates at a given energy [24]. 

The real-space distribution of the wave amplitude in a quasi-eigenstate corresponds to the local 

density of states measured in the scanning tunneling microscopy experiments [25]. In the left 

and right panels of Figure 3, we show contour plots of several quasi-eigenstates for a layer of 

rotated graphene stacked on top of an AB-stacked bilayer graphene. Our theoretical calculations 

of this heterostructure consisting of three graphene layers show exactly the same tendency as 

the experimental data, i.e. the hexagonal structure in the density states is only present near the 

Fermi level and fades away at higher energies.  

The fact that the differential conductivity only exhibits a density modulation near the Van 

Hove singularities is reminiscent for a charge density wave. One of the hallmarks of a charge 

density wave is that the electron density and the lattice positions are coupled. Charge density 

waves may be generated by an exchange-driven instability of a metallic Fermi surface (Fermi 

nesting), or by a lattice-dynamical instability leading to a static periodic lattice distortion. It is 

important to point out here that a periodic potential in a Dirac system will not result in the 

opening of a band gap, but rather in the creation of new Dirac points and Van Hove singularities 

[32,33]. The concept of charge density of waves needs therefore to be revisited for Dirac systems. 

The energy dependent electron density modulation that we measured for twisted graphene can 

be fully explained by tight-binding calculations. Since electron-phonon coupling is not included 

in these tight-binding calculations it remains to be seen whether we are dealing here with a 

charge density wave. 

 

Conclusions 

Spatially resolved scanning tunneling spectroscopy measurements of twisted graphene 

reveal a hitherto unnoticed variation of the density of states within the unit cell of the moiré 

pattern. A honeycomb pattern is found that is comprised of two inequivalent hexagonal sub-

lattices. The symmetry of the honeycomb lattice of the moiré pattern is broken by a third 

graphene layer that is stacked in a Bernal configuration with respect to the second graphene 

layer. Our experimental findings are in excellent agreement with tight-binding calculations. 
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Figure 1 
Scanning tunneling microscopy image of twisted graphene. The periodicity of the moiré pattern 

is 6.2 nm, corresponding to a twist angle of 2.3o. The peak-to-valley variation is 1.9 Å. Image size 

15 nm x 15 nm, sample bias -1.2 V and tunnel current 400 pA. T= 77 K.  
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Figure 2  
(a) Differential conductivity recorded at different locations of the STM image shown in the inset. 
(b) Calculated total density of states for rotated bilayer and trilayer graphene (θ=2.0°, the 
supercell is constructed as in Ref. 9 (Eq. 1) using m=1 and n=49). For trilayer graphene with an 
extra interaction interlayer hoppings between the top and bottom layers with a maximum value 
of 0.1 eV are included (for two sites on A-A stacking). (c) Cartoon of the electronic structure of 
twisted bilayer graphene near the Fermi level. Red curve: energy dispersion below the Fermi level. 
Blue curve: energy dispersion above the Fermi level. 
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Figure 3 

Middle panels: Spatial map of the differential conductivity at different bias voltages. The large 

bright spots in the dI/dV maps correspond to the higher parts of the moiré pattern (see Figure 

1(b)). Left and right panels (in red dashed box): The real-space amplitude (logarithmic scale) of 

the calculated quasi-eigenstates for trilayer graphene with twisted top layer (θ=2.0°). The results 

are obtained by averaging over 24 initial states to mimic the randomness introduced by the initial 

state. In each figure, blue and red correspond to the maximal and minimal intensity, respectively. 

For higher absolute energy this amplitude is lower. 
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Figure 4 

(a) Spatial map of the differential conductivity. For the sake of clarity we have inverted the 

color scale. The large dark spots correspond to the bright spots of the moiré pattern in 

topography image. The dI/dV maps are recorded with a lock-in technique (sample bias -

0.3 V, modulation voltage 20 mV and frequency lock-in amplifier 1.9 kHz). 

(b) Structural model of trilayer graphene. The bottom two layers are stacked in the Bernal 

configuration, whereas the top layer graphene is twisted by 2.0o with respect to the 

second graphene layer.  


