1,448 research outputs found
Sensitivity analysis of statistical measures for the reconstruction of microstructures based on the minimization of generalized least-square functionals
For the simulation of micro-heterogeneous materials the FE2-method provides incorporation of the mechanical behavior at the microscale in a direct manner by taking into account a microscopic boundary value problem based on a representative volume element (RVE). A main problem of this approach is the high computational cost, when we have to deal with RVEs that are characterized by a complex geometry of the individual constituents. This leads to a large number of degrees of freedom and history variables at the microscale which needs a large amount of memory, not to mention the high computation time. Therefore, methods that reduce the complexity of such RVEs play an important role for efficient direct micro-macro transition procedures. In this contribution we focus on random matrix-inclusion microstructures and analyze several statistical measures with respect to their influence on the characterization of the inclusion phase morphology. For this purpose we apply the method proposed in Balzani and Schr¨oder (2008); Balzani et al. (2009a), where an objective function is minimized which takes into account differences between statistical measures computed for the original binary image of a given real microstructure and a simplified statistically similar representative volume element (SSRVE). The analysis with respect to the capability of the resulting SSRVEs to reflect the mechanical response in some simple independent virtual experiments allows for an estimation of the importance of the investigated statistical measures
PARAMETRICAL ANALYSIS AND DIGITAL FABRICATION OF THIN SHELL STRUCTURES: THE IMPACT OF CONSTRUCTION TECHNIQUE ON THE RESULTING GEOMETRY OF THE GAUSSIAN VAULTS OF ELADIO DIESTE
Abstract. The objective of this article is to analyze the state-of-art regarding the construction process of the Gaussian Vaults of the Uruguayan civil engineer Eladio Dieste and to identify the elements that underlie the relationship between the constructive techniques and procedures within this specific structural typology and its resulting geometry. As complementary objectives, this research aims for the identification of the gaps in the registry of such constructive procedures. The essay focuses on the geometry of the Gaussian Vaults designed and built by Dieste, in a way that these rigid structural surfaces' geometry had their original construction drawings redrawn and analyzed from the perspective of its construction technique by means of the Parametrical Modelling and Digital Fabrication of case studies.</p
INVESTIGATIONS ON THE DESIGN PROCESS OF ELADIO DIESTE: 3D PARAMETRIC MODELLING OF MODERN LATIN AMERICAN ARCHITECTURAL HERITAGE
Abstract. The Uruguayan Engineer Eladio Dieste underwent a quest for thinness in the field of structural design which rendered his reinforced masonry thin-shell structures at a conspicuous position in Modern Latin American Architectural Heritage, so much so as to have Dieste's work in Latin America and Europe included in an indicative list for UNESCO's cultural heritage sites as of 2010. Nonetheless, the design process that led Dieste to such innovative structural typologies is yet to be fully academically explored. Thus, the objective of this paper is to examine the state-of-art regarding the intricate design process of Eladio Dieste's gaussian vaults and shed some light on the existing gaps within this process by means of the 3D parametric modelling and digital fabrication of selected case studies. The adoption methodological procedures such as 3D parametrical modelling and digital fabrication allows for the establishment of important relationships between the design process and the resulting geometry of Eladio Dieste's designs, as well as furthering registry of Dieste's legacy for conservation purposes.</p
Efficacy of adalimumab as second-line therapy in a pediatric cohort of crohn’s disease patients who failed infliximab therapy: The Italian society of pediatric gastroenterology, hepatology, and nutrition experience
Background: Adalimumab (Ada) treatment is an available option for pediatric Crohn’s disease (CD) and the published experience as rescue therapy is limited. Objectives: We investigated Ada efficacy in a retrospective, pediatric CD cohort who had failed previous infliximab treatment, with a minimum follow-up of 6 months. Methods: In this multicenter study, data on demographics, clinical activity, growth, laboratory values (CRP) and adverse events were collected from CD patients during follow-up. Clinical remission (CR) and response were defined with Pediatric CD Activity Index (PCDAI) score ≤10 and a decrease in PCDAI score of ≥12.5 from baseline, respectively. Results: A total of 44 patients were consecutively recruited (mean age 14.8 years): 34 of 44 (77%) had active disease (mean PCDAI score 24.5) at the time of Ada administration, with a mean disease duration of 3.4 (range 0.3–11.2) years. At 6, 12, and 18 months, out of the total of the enrolled population, CR rates were 55%, 78%, and 52%, respectively, with a significant decrease in PCDAI scores (P<0.01) and mean CRP values (mean CRP 5.7 and 2.4 mL/dL, respectively; P<0.01) at the end of follow-up. Steroid-free remission rates, considered as the total number of patients in CR who were not using steroids at the end of this study, were 93%, 95%, and 96% in 44 patients at 6, 12, and 18 months, respectively. No significant differences in growth parameters were detected. In univariate analysis of variables related to Ada efficacy, we found that only a disease duration >2 years was negatively correlated with final PCDAI score (P<0.01). Two serious adverse events were recorded: 1 meningitis and 1 medulloblastoma. Conclusion: Our data confirm Ada efficacy in pediatric patients as second-line biological therapy after infliximab failure. Longer-term prospective data are warranted to define general effectiveness and safety in pediatric CD patients
Comparison of different cross-sectional approaches for the structural design and optimization of composite wind turbine blades based on beam models
During the preliminary design phase of wind turbine blades, the evaluation of many design candidates in a short period of time plays an important role. Computationally efficient methods for the structural analysis that correctly predict stiffness matrix entries for beam models including the (bend–twist) coupling terms are thus needed. The present paper provides an extended overview of available approaches and shows their abilities to fulfill the requirements for the composite design of rotor blades with respect to accuracy and computational efficiency. Three cross-sectional theories are selected and implemented to compare the prediction quality of the cross-sectional coupling stiffness terms and the stress distribution based on different multi-cell test cross-sections. The cross-sectional results are compared with the 2D finite element code BECAS and are discussed in the context of accuracy and computational efficiency. The analytical solution performing best shows very small deviations in the stiffness matrix entries compared to BECAS (below 1 % in the majority of test cases). It achieved a better resolution of the stress distribution and a computation time that is more than an order of magnitude smaller using the same spatial discretization. The deviations of the stress distributions are below 10 % for most test cases. The analytical solution can thus be rated as a feasible approach for a beam-based pre-design of wind turbine rotor blades.</p
Economic costs of invasive alien ants worldwide
Invasive ants are amongst the most destructive and widespread invaders across the globe; they can strongly alter invaded ecosystems and are responsible for the loss of native ant species. Several studies have reported that invasive ants can also lead to substantial economic costs. In this study, we search, describe and analyse 1342 reported costs of invasive ants compiled in the InvaCost database. Economic costs, reported since 1930 for 12 ant species in 27 countries, totalled US 10.95 billion were incurred, and US 1.79 billion), with much lower amounts dedicated to prevention (US$ 235.63 million). Besides the taxonomic bias, cost information was lacking for an average of 78% of the invaded countries. Moreover, even in countries where costs were reported, such information was available for only 56% of the invaded locations. Our synthesis suggests that the global costs of invasive ants are massive but largely biased towards developed economies, with a huge proportion of underreported costs, and thus most likely grossly underestimated. We advocate for more and improved cost reporting of invasive ants through better collaborations between managers, practitioners and researchers, a crucial basis for adequately informing future budgets and improving proactive management actions of invasive ants
Macroscopic transport by synthetic molecular machines
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.
Recommended from our members
Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development
Mechanical stress exerted and experienced by cells during tissue morphogenesis and organ formation plays an important role in embryonic development. While techniques to quantify mechanical stresses in vitro are available, few methods exist for studying stresses in living organisms. Here, we describe and characterize cell-like polyacrylamide (PAAm) bead sensors with well-defined elastic properties and size for in vivo quantification of cell-scale stresses. The beads were injected into developing zebrafish embryos and their deformations were computationally analyzed to delineate spatio-temporal local acting stresses. With this computational analysis-based cell-scale stress sensing (COMPAX) we are able to detect pulsatile pressure propagation in the developing neural rod potentially originating from polarized midline cell divisions and continuous tissue flow. COMPAX is expected to provide novel spatio-temporal insight into developmental processes at the local tissue level and to facilitate quantitative investigation and a better understanding of morphogenetic processes. © 2019, The Author(s)
- …