406 research outputs found

    Electronic Spectra of Cyano-5-phenyltetrazoles

    Get PDF
    Absorption and luminescence spectra of ortho-, meta- and para- cyano-5-phenyltetrazole in aqueous solutions at room and low temperature were measured. Investigations wene carried out in super acidic (H; = -8) to basic (pR = 12)media. Three dissociation forms were identified (anion, molecule and cation), and the corresponding acid-base equilibrium constants in the ground state, speetrophotometrically, and in the first excited singlet state from the titration curves and by Forster cycle were determined

    The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft models

    Get PDF
    YesNon-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodologyā€™s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use.University of Bradfor

    Vascular endothelial growth factor C therapy for polycystic kidney diseases.

    Get PDF
    Polycystic kidney diseases (PKD) are genetic disorders characterized by progressive epithelial cyst growth leading to destruction of normally functioning renal tissue. Current therapies have focused on the cyst epithelium, and little is known about how the blood and lymphatic microvasculature modulates cystogenesis. Hypomorphic Pkd1nl/nl mice were examined, showing that cystogenesis was associated with a disorganized pericystic network of vessels expressing platelet/endothelial cell adhesion molecule 1 and vascular endothelial growth factor receptor 3 (VEGFR3). The major ligand for VEGFR3 is VEGFC, and there were lower levels of Vegfc mRNA within the kidneys during the early stages of cystogenesis in 7-day-old Pkd1nl/nl mice. Seven-day-old mice were treated with exogenous VEGFC for 2 weeks on the premise that this would remodel both the VEGFR3+ pericystic vascular network and larger renal lymphatics that may also affect the severity of PKD. Treatment with VEGFC enhanced VEGFR3 phosphorylation in the kidney, normalized the pattern of the pericystic network of vessels, and widened the large lymphatics in Pkd1nl/nl mice. These effects were associated with significant reductions in cystic disease, BUN and serum creatinine levels. Furthermore, VEGFC administration reduced M2 macrophage pericystic infiltrate, which has been implicated in the progression of PKD. VEGFC administration also improved cystic disease in Cys1cpk/cpk mice, a model of autosomal recessive PKD, leading to a modest but significant increase in lifespan. Overall, this study highlights VEGFC as a potential new treatment for some aspects of PKD, with the possibility for synergy with current epithelially targeted approaches

    Collagen IV levels are elevated in the serum of patients with primary breast cancer compared to healthy volunteers

    Get PDF
    Collagen IV is a major component of the vascular basement membrane and may be a marker of angiogenesis. Serum levels of this protein are elevated in some human cancers. Our objectives were to compare collagen IV levels in the serum of breast cancer patients and healthy women and to examine changes during preoperative chemotherapy. Sera from 51 patients with stage IIā€“III breast cancer and 55 healthy controls were analysed. Collagen IV level was measured by a commercially available sandwich enzyme link immunoassay. Baseline serum levels were compared between cancer patients and healthy women and paired pre- and post-chemotherapy measurements were also performed in 39 patients who received preoperative chemotherapy and were correlated with response to therapy. The median serum collagen IV concentration was significantly higher in cancer patients (166ā€‰Ī¼gā€‰lāˆ’1) than in healthy women (115ā€‰Ī¼gā€‰lāˆ’1), P<0.001. Chemotherapy induced a significant further increase in serum collagen IV (167ā€‰Ī¼gā€‰lāˆ’1 prechemo vs 206ā€‰Ī¼gā€‰lāˆ’1 postchemo, P=0.001). There were no correlations between baseline collagen IV levels and response to therapy, age, clinical stage or HER2 status. In conclusion, patients with breast cancer have elevated levels of collagen IV compared to healthy women and collagen IV levels increase further during chemotherapy

    Assessing the Permeability of Engineered Capillary Networks in a 3D Culture

    Get PDF
    Many pathologies are characterized by poor blood vessel growth and reduced nutrient delivery to the surrounding tissue, introducing a need for tissue engineered blood vessels. Our lab has developed a 3D co-culture method to grow interconnected networks of pericyte-invested capillaries, which can anastamose with host vasculature following implantation to restore blood flow to ischemic tissues. However, if the engineered vessels contain endothelial cells (ECs) that are misaligned or contain wide junctional gaps, they may function improperly and behave more like the pathologic vessels that nourish tumors. The purpose of this study was to test the resistance to permeability of these networks in vitro, grown with different stromal cell types, as a metric of vessel functionality. A fluorescent dextran tracer was used to visualize transport across the endothelium and the pixel intensity was quantified using a customized MATLAB algorithm. In fibroblast-EC co-cultures, the dextran tracer easily penetrated through the vessel wall and permeability was high through the first 5 days of culture, indicative of vessel immaturity. Beyond day 5, dextran accumulated at the periphery of the vessel, with very little transported across the endothelium. Quantitatively, permeability dropped from initial levels of 61% to 39% after 7 days, and to 7% after 2 weeks. When ECs were co-cultured with bone marrow-derived mesenchymal stem cells (MSCs) or adipose-derived stem cells (AdSCs), much tighter control of permeability was achieved. Relative to the EC-fibroblast co-cultures, permeabilities were reduced 41% for the EC-MSC co-cultures and 50% for the EC-AdSC co-cultures after 3 days of culture. By day 14, these permeabilities decreased by 68% and 77% over the EC-fibroblast cultures. Co-cultures containing stem cells exhibit elevated VE-cadherin levels and more prominent EC-EC junctional complexes when compared to cultures containing fibroblasts. These data suggest the stromal cell identity influences the functionality and physiologic relevance of engineered capillary networks

    A function blocking anti-mouse integrin Ī±5Ī²1 antibody inhibits angiogenesis and impedes tumor growth in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrins are important adhesion molecules that regulate tumor and endothelial cell survival, proliferation and migration. The integrin Ī±5Ī²1 has been shown to play a critical role during angiogenesis. An inhibitor of this integrin, volociximab (M200), inhibits endothelial cell growth and movement <it>in vitro</it>, independent of the growth factor milieu, and inhibits tumor growth <it>in vivo </it>in the rabbit VX2 carcinoma model. Although volociximab has already been tested in open label, pilot phase II clinical trials in melanoma, pancreatic and renal cell cancer, evaluation of the mechanism of action of volociximab has been limited because this antibody does not cross-react with murine Ī±5Ī²1, precluding its use in standard mouse xenograft models.</p> <p>Methods</p> <p>We generated a panel of rat-anti-mouse Ī±5Ī²1 antibodies, with the intent of identifying an antibody that recapitulated the properties of volociximab. Hybridoma clones were screened for analogous function to volociximab, including specificity for Ī±5Ī²1 heterodimer and blocking of integrin binding to fibronectin. A subset of antibodies that met these criteria were further characterized for their capacities to bind to mouse endothelial cells, inhibit cell migration and block angiogenesis <it>in vitro</it>. One antibody that encompassed all of these attributes, 339.1, was selected from this panel and tested in xenograft models.</p> <p>Results</p> <p>A panel of antibodies was characterized for specificity and potency. The affinity of antibody 339.1 for mouse integrin Ī±5Ī²1 was determined to be 0.59 nM, as measured by BIAcore. This antibody does not significantly cross-react with human integrin, however 339.1 inhibits murine endothelial cell migration and tube formation and elicits cell death in these cells (EC<sub>50 </sub>= 5.3 nM). In multiple xenograft models, 339.1 inhibited the growth of established tumors by 40ā€“60% (<it>p </it>< 0.05) and this inhibition correlates with a concomitant decrease in vessel density.</p> <p>Conclusion</p> <p>The results herein demonstrate that 339.1, like volociximab, exhibits potent anti-Ī±5Ī²1 activity and confirms that inhibition of integrin Ī±5Ī²1 impedes angiogenesis and slows tumor growth <it>in vivo</it>.</p

    Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In principle, the elimination of malignancies by oncolytic virotherapy could proceed by different mechanisms - e.g. tumor cell specific oncolysis, destruction of the tumor vasculature or an anti-tumoral immunological response. In this study, we analyzed the contribution of these factors to elucidate the responsible mechanism for regression of human breast tumor xenografts upon colonization with an attenuated vaccinia virus (VACV).</p> <p>Methods</p> <p>Breast tumor xenografts were analyzed 6 weeks post VACV infection (p.i.; regression phase) by immunohistochemistry and mouse-specific expression arrays. Viral-mediated oncolysis was determined by tumor growth analysis combined with microscopic studies of intratumoral virus distribution. The tumor vasculature was morphologically characterized by diameter and density measurements and vessel functionality was analyzed by lectin perfusion and extravasation studies. Immunological aspects of viral-mediated tumor regression were studied in either immune-deficient mouse strains (T-, B-, NK-cell-deficient) or upon cyclophosphamide-induced immunosuppression (MHCII<sup>+</sup>-cell depletion) in nude mice.</p> <p>Results</p> <p>Late stage VACV-infected breast tumors showed extensive necrosis, which was highly specific to cancer cells. The tumor vasculature in infected tumor areas remained functional and the endothelial cells were not infected. However, viral colonization triggers hyperpermeability and dilatation of the tumor vessels, which resembled the activated endothelium in wounded tissue. Moreover, we demonstrated an increased expression of genes involved in leukocyte-endothelial cell interaction in VACV-infected tumors, which orchestrate perivascular inflammatory cell infiltration. The immunohistochemical analysis of infected tumors displayed intense infiltration of MHCII-positive cells and colocalization of tumor vessels with MHCII<sup>+</sup>/CD31<sup>+ </sup>vascular leukocytes. However, GI-101A tumor growth analysis upon VACV-infection in either immunosuppressed nude mice (MHCII<sup>+</sup>-cell depleted) or in immune-deficient mouse strains (T-, B-, NK-cell-deficient) revealed that neither MHCII-positive immune cells nor T-, B-, or NK cells contributed significantly to VACV-mediated tumor regression. In contrast, tumors of immunosuppressed mice showed enhanced viral spreading and tumor necrosis.</p> <p>Conclusions</p> <p>Taken together, these results indicate that VACV-mediated oncolysis is the primary mechanism of tumor shrinkage in the late regression phase. Neither the destruction of the tumor vasculature nor the massive VACV-mediated intratumoral inflammation was a prerequisite for tumor regression. We propose that approaches to enhance viral replication and spread within the tumor microenvironment should improve therapeutical outcome.</p

    Identification of novel vascular targets in lung cancer

    Get PDF
    Background: Lung cancer remains the leading cause of cancer-related death, largely owing to the lack of effective treatments. A tumour vascular targeting strategy presents an attractive alternative; however, the molecular signature of the vasculature in lung cancer is poorly explored. This work aimed to identify novel tumour vascular targets in lung cancer. Methods: Enzymatic digestion of fresh tissue followed by endothelial capture with Ulex lectin-coated magnetic beads was used to isolate the endothelium from fresh tumour specimens of lung cancer patients. Endothelial isolates from the healthy and tumour lung tissue were subjected to whole human genome expression profiling using microarray technology. Results: Bioinformatics analysis identified tumour endothelial expression of angiogenic factors, matrix metalloproteases and cellsurface transmembrane proteins. Predicted novel tumour vascular targets were verified by RNA-seq, quantitative real-time PCR analysis and immunohistochemistry. Further detailed expression profiling of STEAP1 on 82 lung cancer patients confirmed STEAP1 as a novel target in the tumour vasculature. Functional analysis of STEAP1 using siRNA silencing implicates a role in endothelial cell migration and tube formation. Conclusions: The identification of cell-surface tumour endothelial markers in lung is of interest in therapeutic antibody and vaccine development

    Myeloid Cells Contribute to Tumor Lymphangiogenesis

    Get PDF
    The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation
    • ā€¦
    corecore