975 research outputs found

    A comparison of environmental impact assessment in the United States and the European Union : the case study of Italy

    Get PDF
    Award date: 24 November 2003Supervisor: G. De BĆŗrcaFirst made available online on 23 February 201

    Evaluation of European Land Data Assimilation System (ELDAS) products using in site observations

    Get PDF
    Three land-surface models with land-data assimilation scheme (DA) were evaluated for one growing season using in situ observations obtained across Europe. To avoid drifts in the land-surface state in the models, soil moisture corrections are derived from errors in screen-level atmospheric quantities. With the in situ data it is assessed whether these land-surface schemes produce adequate results regarding the annual range of the soil water content, the monthly mean soil moisture content in the root zone and evaporative fraction (the ratio of evapotranspiration to energy available at the surface). DA considerably reduced bias in net precipitation, while slightly reducing RMSE as well. Evaporative fraction was improved in dry conditions but was hardly affected in moist conditions. The amplitude of soil moisture variations tended to be underestimated. The impact of improved land-surface properties like Leaf Area Index, water holding capacity and rooting depth may be as large as corrections of the DA systems. Because soil moisture memorizes errors in the hydrological cycle of the models, DA will remain necessary in forecast mode. Model improvements should be balanced against improvements of DA per se. Model bias appearing from persistent analysis increments arising from DA systems should be addressed by model improvement

    Fauna Europaea: Gastrotricha.

    Get PDF
    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education

    Liquid-solid mass transfer in adsorption systems - an overlooked resistance?

    Get PDF
    In liquid-solid adsorption, fluid film diffusion is typically faster than intraparticle diffusion, especially for microporous adsorbents. However, fluid film diffusion might play a significant role in the overall rate of the process for mesoporous-macroporous and non-porous solids. In most adsorption modeling studies, the fluid film diffusion step is typically ignored, which is not always justified. This article critically discusses the theory behind the liquid-solid mass-transfer coefficient in stirred vessels and presents the dissolution and adsorption methods adopted for estimating its value. Then, starting from the definition of the Biot number, an original analysis is developed with reference to selected studies. Surface versus pore diffusion of the adsorbate in the adsorbent is taken into account, and external versus internal mass-transfer resistance is considered to put the fluid film resistance back in the picture when needed. Iso-Biot charts where the operating points can be visualized are presented as well

    Thermally-aware composite run-time CPU power models

    No full text
    Accurate and stable CPU power modelling is fundamental in modern system-on-chips (SoCs) for two main reasons: 1) they enable significant online energy savings by providing a run-time manager with reliable power consumption data for controlling CPU energy-saving techniques; 2) they can be used as accurate and trusted reference models for system design and exploration. We begin by showing the limitations in typical performance monitoring counter (PMC) based power modelling approaches and illustrate how an improved model formulation results in a more stable model that efficiently captures relationships between the input variables and the power consumption. Using this as a solid foundation, we present a methodology for adding thermal-awareness and analytically decomposing the power into its constituting parts. We develop and validate our methodology using data recorded from a quad-core ARM Cortex-A15 mobile CPU and we achieve an average prediction error of 3.7% across 39 diverse workloads, 8 Dynamic Voltage-Frequency Scaling (DVFS) levels and with a CPU temperature ranging from 31 degrees C to 91 degrees C. Moreover, we measure the effect of switching cores offline and decompose the existing power model to estimate the static power of each CPU and L2 cache, the dynamic power due to constant background (BG) switching, and the dynamic power caused by the activity of each CPU individually. Finally, we provide our model equations and software tools for implementing in a run-time manager or for using with an architectural simulator, such as gem5

    Experimental and modeling studies of Sr2+ and Cs+ sorption on cryogels and comparison to commercial adsorbents

    Get PDF
    In this work, two cryogels with the key monomers methacrylic acid and 2-acrylamido-2-methyl-1-propansulfonic acid (named AAC and SAC, respectively) with various functional groups were used as adsorbents for the removal of cesium and strontium ions from aqueous solutions. Kinetics, equilibrium, and column studies were carried out including experiments in different water matrices (ultrapure, tap, and river water) and comparison to commercial adsorbents. AAC reached sorption capacity of 362 mg gā€“1 for Cs+ and 209 mg gā€“1 for Sr2+, whereas SAC polymer showed maximum removal capacities of 259 and 211 mg gā€“1 for Cs+ and Sr2+, respectively. The five cycles of adsorption/desorption experiments showed a maximum of 8% loss of effectiveness for both cryogels. Batch kinetics adsorption data were modeled by using a rigorous diffusional model coupled to a novel fractal-like expression for variable surface diffusivity. The model revealed that the surface diffusivity dependence on time is nonmonotonic, with the occurrence of a maximum. Also, both fluid film and intraparticle transport resistances were shown to be important, with the internal one being more influential. The cryogels and two commercial materials (ion-exchange resin and zeolite) were tested for the removal of Cs+ and Sr2+ in ultrapure, tap, and river water; the results showed that the cryogels exhibit competitive effectiveness

    EXPERIMENTAL AND MODELING STUDIES OF SR2+ AND CS+ SORPTION ON CRYOGELS AND COMPARISON TO COMMERCIAL ADSORBENTS

    Get PDF
    In this work, two cryogels with the key monomers methacrylic acid and 2-acrylamido-2-methyl-1-propansulfonic acid (named AAC and SAC, respectively) with various functional groups were used as adsorbents for the removal of cesium and strontium ions from aqueous solutions. Kinetics, equilibrium, and column studies were carried out including experiments in different water matrices (ultrapure, tap, and river water) and comparison to commercial adsorbents. AAC reached sorption capacity of 362 mg gāˆ’1 for Cs+ and 209 mg gāˆ’1 for Sr2+, whereas SAC polymer showed maximum removal capacities of 259 and 211 mg gāˆ’1 for Cs+ and Sr2+, respectively. The five cycles of adsorption/desorption experiments showed a maximum of 8% loss of effectiveness for both cryogels. Batch kinetics adsorption data were modeled by using a rigorous diffusional model coupled to a novel fractal-like expression for variable surface diffusivity. The model revealed that the surface diffusivity dependence on time is nonmonotonic, with the occurrence of a maximum. Also, both fluid film and intraparticle transport resistances were shown to be important, with the internal one being more influential. The cryogels and two commercial materials (ion-exchange resin and zeolite) were tested for the removal of Cs+ and Sr2+ in ultrapure, tap, and river water; the results showed that the cryogels exhibit competitive effectiveness
    • ā€¦
    corecore