26 research outputs found

    Incorporating BCNU wafers into malignant glioma treatment: European case studies

    Get PDF
    International audienc

    Modeling of post-stroke stimulation of cortical tissue

    No full text
    Following a stroke, cortical networks in the penumbra area become fragmented and partly deactivated. We develop a model to study the propagation of waves of electric potential in the cortical tissue with integro-differential equations arising in neural field models. The wave speed is characterized by the tissue excitability and connectivity determined through parameters of the model. Post-stroke tissue damage in the penumbra area creates a hypoconnectivity and decreases the speed of wave propagation. It is proposed that external stimulation could restore the wave speed in the penumbra area under certain conditions of the parameters. Model guided cortical stimulation could be used to improve the functioning of cortical networks. © 201

    Modeling of post-stroke stimulation of cortical tissue

    No full text
    Following a stroke, cortical networks in the penumbra area become fragmented and partly deactivated. We develop a model to study the propagation of waves of electric potential in the cortical tissue with integro-differential equations arising in neural field models. The wave speed is characterized by the tissue excitability and connectivity determined through parameters of the model. Post-stroke tissue damage in the penumbra area creates a hypoconnectivity and decreases the speed of wave propagation. It is proposed that external stimulation could restore the wave speed in the penumbra area under certain conditions of the parameters. Model guided cortical stimulation could be used to improve the functioning of cortical networks. © 201

    Un nouveau cryostat pour le microscope électronique supraconducteur 400 kV

    No full text
    Ce cryostat tout en ayant un réservoir de capacité accrue (1,8l au lieu de 0,6 l a une consommation propre extrêmement réduite (0,22 l/h d'hélium liquide au lieu de 1,2 1/h). Cette amélioration est presque essentiellement due à la diminution du rayonnement reçu grâce à un meilleur écrantage à 77 K. Un bidon de 25 1 permet de travailler effectivement avec le microscope plus de 40 h par semaine

    Cortical stimulation in aphasia following ischemic stroke: toward model-guided electrical neuromodulation

    No full text
    The aim of this paper is to integrate different bodies of research including brain traveling waves, brain neuromodulation, neural field modeling and post-stroke language disorders in order to explore the opportunity of implementing model-guided, cortical neuromodulation for the treatment of post-stroke aphasia. Worldwide according to WHO, strokes are the second leading cause of death and the third leading cause of disability. In ischemic stroke, there is not enough blood supply to provide enough oxygen and nutrients to parts of the brain, while in hemorrhagic stroke, there is bleeding within the enclosed cranial cavity. The present paper focuses on ischemic stroke. We first review accumulating observations of traveling waves occurring spontaneously or triggered by external stimuli in healthy subjects as well as in patients with brain disorders. We examine the putative functions of these waves and focus on post-stroke aphasia observed when brain language networks become fragmented and/or partly silent, thus perturbing the progression of traveling waves across perilesional areas. Secondly, we focus on a simplified model based on the current literature in the field and describe cortical traveling wave dynamics and their modulation. This model uses a biophysically realistic integro-differential equation describing spatially distributed and synaptically coupled neural networks producing traveling wave solutions. The model is used to calculate wave parameters (speed, amplitude and/or frequency) and to guide the reconstruction of the perturbed wave. A stimulation term is included in the model to restore wave propagation to a reasonably good level. Thirdly, we examine various issues related to the implementation model-guided neuromodulation in the treatment of post-stroke aphasia given that closed-loop invasive brain stimulation studies have recently produced encouraging results. Finally, we suggest that modulating traveling waves by acting selectively and dynamically across space and time to facilitate wave propagation is a promising therapeutic strategy especially at a time when a new generation of closed-loop cortical stimulation systems is about to arrive on the market. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature

    Epidural Cortical Stimulation as a Treatment for Poststroke Aphasia: A Systematic Review of the Literature and Underlying Neurophysiological Mechanisms

    No full text
    International audienceBackground. Nearly 15 million people suffer from stroke every year worldwide, with about 20% of the survivors retaining chronic aphasic symptoms. Spontaneous recovery is limited to 3 to 6 months. Cortical stimulation techniques have been proposed to enhance the recovery process. Objective. The goal of this study was to evaluate the benefit of epidural cortical stimulation for the treatment of poststroke aphasia, based on a systematic review of the literature. Methods. An extensive PubMed search was performed for English language articles published from 1990 to 2014 with the keywords (cortical OR epidural) AND stimulation AND stroke AND (aphasia OR language OR speech). The criteria analyzed included the type of study, epidemiology of patients, stroke, aphasia, stimulation protocol, concurrent rehabilitation therapies, language evaluations, results observed, and follow-up. Results. Seven cases were reported to date (3 case reports, 1 randomized controlled trial). All patients experienced nonfluent aphasia following an ischemic stroke. All four studies reported encouraging effects of the stimulation with improved lexical access and fluency for all patients. The effects were specific, independent of the motor recovery or of the pain reported by the patients, and they were linked to the stimulation parameters. Conclusions. Due to the small number of existing cases in the literature, the strength of the evidence is still low. Two main hypotheses of neurobiological mechanisms have been explored: either using continuous stimulation to modify cortical perilesional inhibition or using intermittent stimulation during the speech and language therapy sessions to explore synaptic plasticity and long-term potentiation or depression. To establish the role of epidural stimulation and the relevant stimulation protocols and parameters, large randomized controlled trials are mandatory. We suggest avenues of investigation
    corecore